找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Monotonicity and Queueing Applications of Birth-Death Processes; E. A. Doorn Book 1981 Springer-Verlag New York Inc. 1981 Gebur

[復(fù)制鏈接]
查看: 31149|回復(fù): 46
樓主
發(fā)表于 2025-3-21 18:45:51 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Stochastic Monotonicity and Queueing Applications of Birth-Death Processes
編輯E. A. Doorn
視頻videohttp://file.papertrans.cn/879/878036/878036.mp4
叢書名稱Lecture Notes in Statistics
圖書封面Titlebook: Stochastic Monotonicity and Queueing Applications of Birth-Death Processes;  E. A. Doorn Book 1981 Springer-Verlag New York Inc. 1981 Gebur
描述A stochastic process {X(t): 0 S t < =} with discrete state space S c ~ is said to be stochastically increasing (decreasing) on an interval T if the probabilities Pr{X(t) > i}, i E S, are increasing (decreasing) with t on T. Stochastic monotonicity is a basic structural property for process behaviour. It gives rise to meaningful bounds for various quantities such as the moments of the process, and provides the mathematical groundwork for approximation algorithms. Obviously, stochastic monotonicity becomes a more tractable subject for analysis if the processes under consideration are such that stochastic mono tonicity on an inter- val 0 < t < E implies stochastic monotonicity on the entire time axis. DALEY (1968) was the first to discuss a similar property in the context of discrete time Markov chains. Unfortunately, he called this property "stochastic monotonicity", it is more appropriate, however, to speak of processes with monotone transition operators. KEILSON and KESTER (1977) have demonstrated the prevalence of this phenomenon in discrete and continuous time Markov processes. They (and others) have also given a necessary and sufficient condition for a (temporally homogeneous) M
出版日期Book 1981
關(guān)鍵詞Geburts- und Todesprozess (Statistik); Markov chain; Markov process; Monotoner Operator; Warteschlange; b
版次1
doihttps://doi.org/10.1007/978-1-4612-5883-4
isbn_softcover978-0-387-90547-1
isbn_ebook978-1-4612-5883-4Series ISSN 0930-0325 Series E-ISSN 2197-7186
issn_series 0930-0325
copyrightSpringer-Verlag New York Inc. 1981
The information of publication is updating

書目名稱Stochastic Monotonicity and Queueing Applications of Birth-Death Processes影響因子(影響力)




書目名稱Stochastic Monotonicity and Queueing Applications of Birth-Death Processes影響因子(影響力)學(xué)科排名




書目名稱Stochastic Monotonicity and Queueing Applications of Birth-Death Processes網(wǎng)絡(luò)公開度




書目名稱Stochastic Monotonicity and Queueing Applications of Birth-Death Processes網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Stochastic Monotonicity and Queueing Applications of Birth-Death Processes被引頻次




書目名稱Stochastic Monotonicity and Queueing Applications of Birth-Death Processes被引頻次學(xué)科排名




書目名稱Stochastic Monotonicity and Queueing Applications of Birth-Death Processes年度引用




書目名稱Stochastic Monotonicity and Queueing Applications of Birth-Death Processes年度引用學(xué)科排名




書目名稱Stochastic Monotonicity and Queueing Applications of Birth-Death Processes讀者反饋




書目名稱Stochastic Monotonicity and Queueing Applications of Birth-Death Processes讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:53:14 | 只看該作者
A Queueing Model Where Potential Customers are Discouraged by Queue Length,We consider the birth-death process {X(t): 0 ≤ t < ∞} with parameters . which serves as a single server queueing model where potential customers are discouraged by queue length (cf. Conolly (1975), Hadidi (1975) and Natvig (1974, 1975)).
板凳
發(fā)表于 2025-3-22 00:39:27 | 只看該作者
地板
發(fā)表于 2025-3-22 07:15:47 | 只看該作者
The Mean of Birth-Death Processes,Consider a natural birth-death process {X(t): 0 ≤ t < ∞} with μ. = 0 and let m(t) denote the first moment of X(t), i.e.,
5#
發(fā)表于 2025-3-22 09:59:07 | 只看該作者
978-0-387-90547-1Springer-Verlag New York Inc. 1981
6#
發(fā)表于 2025-3-22 13:05:26 | 只看該作者
7#
發(fā)表于 2025-3-22 19:29:40 | 只看該作者
8#
發(fā)表于 2025-3-22 22:51:04 | 只看該作者
9#
發(fā)表于 2025-3-23 03:03:16 | 只看該作者
The Truncated Birth-Death Process, with transition probability functions . which satisfy the conditions . and for i ∈ S = {0, 1,..., N},. as t → 0, where λ. and μ., i ∈ S, are non-negative constants. Throughout this chapter we assume λ. > 0 for i ∈ S{N} and μ. > 0 for i ∈ S{0}.
10#
發(fā)表于 2025-3-23 05:45:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 23:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
重庆市| 云梦县| 舒兰市| 安化县| 东山县| 缙云县| 马公市| 临湘市| 庆阳市| 长乐市| 敦煌市| 宝应县| 宜阳县| 清远市| 剑川县| 本溪| 兰坪| 北京市| 嘉荫县| 阳信县| 平南县| 织金县| 克拉玛依市| 三江| 广平县| 五常市| 吴江市| 新丰县| 弥渡县| 咸宁市| 永城市| 商水县| 永济市| 疏附县| 长武县| 中江县| 绥宁县| 突泉县| 宣化县| 民勤县| 雷州市|