找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Games And Related Topics; In Honor of Professo T. E. S. Raghavan,T. S. Ferguson,O. J. Vrieze Book 1991 Kluwer Academic Publisher

[復制鏈接]
樓主: dejected
31#
發(fā)表于 2025-3-26 23:19:58 | 只看該作者
32#
發(fā)表于 2025-3-27 02:11:33 | 只看該作者
https://doi.org/10.1007/978-94-011-3760-7algorithms; dynamical systems; equilibrium; information; university; utility
33#
發(fā)表于 2025-3-27 08:08:13 | 只看該作者
978-94-010-5673-1Kluwer Academic Publishers 1991
34#
發(fā)表于 2025-3-27 09:30:02 | 只看該作者
Stochastic Games And Related Topics978-94-011-3760-7Series ISSN 0924-6126 Series E-ISSN 2194-3044
35#
發(fā)表于 2025-3-27 17:31:26 | 只看該作者
36#
發(fā)表于 2025-3-27 21:25:15 | 只看該作者
Models for the Game of Liar’s DiceAn explicit multimove game of competition where a player must occasionally lie and the other must detect the lie is solved.
37#
發(fā)表于 2025-3-28 01:24:48 | 只看該作者
Algorithms for Stochastic GamesIn this paper, we present algorithms for the solution of finite discounted stochastic games, without special structure. Three equilibrium concepts are considered: saddle points in two-person zero-sum games, Nash equilibrium points in .-person non-cooperative games and finally Stackelberg equilibrium in two-person games.
38#
發(fā)表于 2025-3-28 03:08:52 | 只看該作者
39#
發(fā)表于 2025-3-28 09:38:46 | 只看該作者
Positive Stochastic Games and a Theorem of OrnsteinStochastic games were first formulated by Shapley in 1953. In his fundamental paper Shapley [.] established the existence of value and optimal stationary strategies for zero-sum β-discounted stochastic games with finitely many states and actions for the two players.
40#
發(fā)表于 2025-3-28 12:22:27 | 只看該作者
Nonzero-Sum Stochastic GamesNonzero-sum discounted stochastic games have equilibrium strategies when the state space is uncountable.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
思茅市| 繁昌县| 马山县| 胶州市| 望都县| 施秉县| 浠水县| 论坛| 彝良县| 汉源县| 罗定市| 信丰县| 浪卡子县| 兴安县| 田东县| 崇阳县| 秦皇岛市| 青海省| 盐亭县| 宁津县| 高台县| 洪洞县| 济南市| 丹巴县| 土默特左旗| 武城县| 贵阳市| 集安市| 新野县| 宁城县| 涡阳县| 蕲春县| 十堰市| 萨迦县| 木里| 乌鲁木齐市| 兴国县| 田林县| 南昌县| 武陟县| 阜康市|