找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Games And Related Topics; In Honor of Professo T. E. S. Raghavan,T. S. Ferguson,O. J. Vrieze Book 1991 Kluwer Academic Publisher

[復制鏈接]
樓主: dejected
31#
發(fā)表于 2025-3-26 23:19:58 | 只看該作者
32#
發(fā)表于 2025-3-27 02:11:33 | 只看該作者
https://doi.org/10.1007/978-94-011-3760-7algorithms; dynamical systems; equilibrium; information; university; utility
33#
發(fā)表于 2025-3-27 08:08:13 | 只看該作者
978-94-010-5673-1Kluwer Academic Publishers 1991
34#
發(fā)表于 2025-3-27 09:30:02 | 只看該作者
Stochastic Games And Related Topics978-94-011-3760-7Series ISSN 0924-6126 Series E-ISSN 2194-3044
35#
發(fā)表于 2025-3-27 17:31:26 | 只看該作者
36#
發(fā)表于 2025-3-27 21:25:15 | 只看該作者
Models for the Game of Liar’s DiceAn explicit multimove game of competition where a player must occasionally lie and the other must detect the lie is solved.
37#
發(fā)表于 2025-3-28 01:24:48 | 只看該作者
Algorithms for Stochastic GamesIn this paper, we present algorithms for the solution of finite discounted stochastic games, without special structure. Three equilibrium concepts are considered: saddle points in two-person zero-sum games, Nash equilibrium points in .-person non-cooperative games and finally Stackelberg equilibrium in two-person games.
38#
發(fā)表于 2025-3-28 03:08:52 | 只看該作者
39#
發(fā)表于 2025-3-28 09:38:46 | 只看該作者
Positive Stochastic Games and a Theorem of OrnsteinStochastic games were first formulated by Shapley in 1953. In his fundamental paper Shapley [.] established the existence of value and optimal stationary strategies for zero-sum β-discounted stochastic games with finitely many states and actions for the two players.
40#
發(fā)表于 2025-3-28 12:22:27 | 只看該作者
Nonzero-Sum Stochastic GamesNonzero-sum discounted stochastic games have equilibrium strategies when the state space is uncountable.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
静宁县| 神木县| 太仆寺旗| 林芝县| 临高县| 永善县| 翁源县| 长汀县| 汝南县| 济宁市| 大丰市| 承德县| 南溪县| 界首市| 外汇| 张家界市| 南丰县| 自贡市| 大田县| 嘉义市| 东源县| 尖扎县| 平湖市| 公安县| 晋州市| 定兴县| 金溪县| 宁津县| 宜宾县| 浦北县| 达尔| 镇沅| 类乌齐县| 含山县| 都昌县| 郑州市| 宜君县| 大名县| 华阴市| 和田县| 清原|