找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Dynamics Out of Equilibrium; Institut Henri Poinc Giambattista Giacomin,Stefano Olla,Gabriel Stoltz Conference proceedings 2019

[復制鏈接]
樓主: 冠軍
11#
發(fā)表于 2025-3-23 12:09:45 | 只看該作者
12#
發(fā)表于 2025-3-23 13:51:31 | 只看該作者
On Optimal Decay Estimates for ODEs and PDEs with Modal Decompositiono the unique normalized steady state. The Lyapunov functional is optimal in the sense that it yields decay estimates in .-norm with the sharp exponential decay rate and minimal multiplicative constant. The modal decomposition of the Goldstein-Taylor model leads to the study of a family of 2-dimensio
13#
發(fā)表于 2025-3-23 18:04:14 | 只看該作者
14#
發(fā)表于 2025-3-24 01:04:44 | 只看該作者
15#
發(fā)表于 2025-3-24 02:47:46 | 只看該作者
16#
發(fā)表于 2025-3-24 07:26:44 | 只看該作者
Collisional Relaxation and Dynamical Scaling in Multiparticle Collisions Dynamicsthod for a simple model: a one-dimensional gas of point particles interacting through stochastic collisions and admitting three conservation laws (density, momentum and energy). Motivated from problems in fusion plasma physics, we consider an energy-dependent collision rate that accounts for the low
17#
發(fā)表于 2025-3-24 10:48:56 | 只看該作者
18#
發(fā)表于 2025-3-24 17:10:02 | 只看該作者
Stochastic Models of Blood Vessel Growthand nutrients to hypoxic tissue. There is strong coupling between the kinetic parameters of the relevant branching - growth - anastomosis stochastic processes of the capillary network, at the microscale, and the family of interacting underlying biochemical fields, at the macroscale. A hybrid mesosca
19#
發(fā)表于 2025-3-24 22:40:13 | 只看該作者
20#
發(fā)表于 2025-3-24 23:12:51 | 只看該作者
Adaptive Importance Sampling with Forward-Backward Stochastic Differential Equationsifferential equations that can be solved efficiently by a least squares Monte Carlo algorithm. We illustrate the approach with a suitable numerical example and discuss the extension of the algorithm to high-dimensional systems.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 08:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
名山县| 松原市| 兰坪| 南靖县| 嘉黎县| 马尔康县| 林口县| 台湾省| 江孜县| 武邑县| 台州市| 曲麻莱县| 新乡县| 东港市| 犍为县| 神木县| 油尖旺区| 星座| 文昌市| 淮阳县| 屏南县| 怀安县| 新乡县| 廉江市| 偏关县| 上饶市| 灵山县| 抚宁县| 安宁市| 舟山市| 伽师县| 青神县| 阿拉善盟| 陕西省| 沙湾县| 二连浩特市| 汾阳市| 烟台市| 理塘县| 班戈县| 岳普湖县|