找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Differential Inclusions and Applications; Micha? Kisielewicz Book 2013 Springer Science+Business Media New York 2013 Feynman-Ka

[復(fù)制鏈接]
樓主: quick-relievers
11#
發(fā)表于 2025-3-23 12:58:30 | 只看該作者
Set-Valued Stochastic Integrals,stochastic integrals defined, like Aumann integrals, as images of subtrajectory integrals of set-valued stochastic processes by some linear mappings with values in .. The set-valued stochastic integrals defined in Sect. 2 are understood as certain set-valued random variables.
12#
發(fā)表于 2025-3-23 15:25:14 | 只看該作者
13#
發(fā)表于 2025-3-23 21:48:58 | 只看該作者
14#
發(fā)表于 2025-3-24 01:10:16 | 只看該作者
Viability Theory,The results of this chapter deal with the existence of viable solutions for stochastic functional and backward inclusions. Weak compactness of sets of all viable weak solutions of stochastic functional inclusions is also considered.
15#
發(fā)表于 2025-3-24 06:23:22 | 只看該作者
16#
發(fā)表于 2025-3-24 07:14:51 | 只看該作者
978-1-4899-8951-2Springer Science+Business Media New York 2013
17#
發(fā)表于 2025-3-24 14:07:30 | 只看該作者
18#
發(fā)表于 2025-3-24 15:23:42 | 只看該作者
Springer Optimization and Its Applicationshttp://image.papertrans.cn/s/image/877907.jpg
19#
發(fā)表于 2025-3-24 21:34:14 | 只看該作者
20#
發(fā)表于 2025-3-25 00:32:43 | 只看該作者
Partial Differential Inclusions,orems and existence and representation theorems for such partial differential inclusions follow. It will be proved that solutions of initial and boundary value problems for partial differential inclusions can be described by weak solutions of stochastic functional inclusions .(., .), as considered in Chap. 4.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 22:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康马县| 仪陇县| 镇宁| 贵阳市| 探索| 盘锦市| 基隆市| 乌海市| 阿鲁科尔沁旗| 浑源县| 云南省| 翼城县| 清新县| 胶南市| 安义县| 通渭县| 姜堰市| 北流市| 湄潭县| 台南县| 苍南县| 长兴县| 沾益县| 芷江| 胶南市| 莱阳市| 犍为县| 芒康县| 历史| 保定市| 高邮市| 尉氏县| 郯城县| 邵阳县| 蓬莱市| 依安县| 蒙城县| 宜城市| 嘉禾县| 北票市| 称多县|