找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Statistical Properties in Firms’ Large-scale Data; Atushi Ishikawa Book 2021 The Editor(s) (if applicable) and The Author(s), under exclus

[復(fù)制鏈接]
樓主: NERVE
21#
發(fā)表于 2025-3-25 04:50:06 | 只看該作者
,Long-Term Firm Growth Derived from Non-Gibrat’s Property and Gibrat’s Law,irm-size variables) on firm age in Japan and France from 2010 to 2013. As a result, we confirmed that the geometric mean value of the firm-size variables obeys a power-law growth for its first 10 years and subsequently follows exponential growth. Using numerical simulations, these long-term properti
22#
發(fā)表于 2025-3-25 10:21:28 | 只看該作者
23#
發(fā)表于 2025-3-25 15:32:13 | 只看該作者
Statistical Properties in Inactive Rate of Firms,al assets, and net assets. We used worldwide information on German, Spanish, French, British, Italian, Japanese, Korean, and Dutch firms recorded in the 2015 and 2016 editions of the comprehensive Orbis database of listed and unlisted firms. We confirmed that the inactive rate of firms is constant r
24#
發(fā)表于 2025-3-25 19:40:35 | 只看該作者
25#
發(fā)表于 2025-3-25 20:26:53 | 只看該作者
26#
發(fā)表于 2025-3-26 02:30:14 | 只看該作者
,Long-Term Firm Growth Derived from Non-Gibrat’s Property and Gibrat’s Law,es of firm-size growth were derived from short-term growth law and properties that were observed in two successive years. First, early power-law growth under a size threshold comes from the extended non-Gibrat’s property. Second, subsequent exponential growth over the threshold is derived from Gibrat’s law.
27#
發(fā)表于 2025-3-26 04:35:54 | 只看該作者
Book 2021og-normal distributions observed at a given time and their changes using time-reversal symmetry, quasi-time-reversal symmetry, Gibrat‘s law, and the non-Gibrat‘s property observed in a short-term period are derived here. The statistical properties observed over a long-term period, such as power-law
28#
發(fā)表于 2025-3-26 10:38:09 | 只看該作者
Atushi IshikawaProvides knowledge of how to analyze firms’ financial data based on empirical data.Facilitates understanding of the statistical properties of firms’ financial data and their relationship.Explains the
29#
發(fā)表于 2025-3-26 14:42:35 | 只看該作者
30#
發(fā)表于 2025-3-26 19:56:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 07:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
梁平县| 韶关市| 霍林郭勒市| 泰来县| 资源县| 子洲县| 鹿邑县| 清徐县| 全州县| 科尔| 任丘市| 商河县| 府谷县| 泰宁县| 德兴市| 祥云县| 镇沅| 都江堰市| 开平市| 民丰县| 隆子县| 樟树市| 宽甸| 大关县| 天等县| 元阳县| 赞皇县| 武山县| 田东县| 三江| 慈利县| 山西省| 安达市| 云和县| 余庆县| 红原县| 革吉县| 南康市| 即墨市| 南平市| 衡山县|