找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Statistical Inversion of Electromagnetic Logging Data; Qiuyang Shen,Jiefu Chen,Zhu Han Book 2021 The Author(s), under exclusive license to

[復(fù)制鏈接]
樓主: 矜持
21#
發(fā)表于 2025-3-25 07:14:01 | 只看該作者
22#
發(fā)表于 2025-3-25 08:38:02 | 只看該作者
23#
發(fā)表于 2025-3-25 13:18:53 | 只看該作者
Introduction,as the journey into the earth can never penetrate even the shell. For centuries, geoscientists have been practicing new technologies adopted from inter-disciplines of mechanics, physics, chemistry, and mathematics to improve the understanding of inside earth. As a planetary science, geology concerns
24#
發(fā)表于 2025-3-25 17:39:08 | 只看該作者
Bayesian Inversion and Sampling Methods,r an ensemble of solutions instead of a unique one via a sampling process. The probabilistic equation is governed by the rule of Bayesian inference. In this chapter, we will introduce those fundamental concepts including Bayesian inference, Markov chain Monte Carlo method, as well as Metropolis-Hast
25#
發(fā)表于 2025-3-25 22:23:31 | 只看該作者
Beyond the Random-Walk: A Hybrid Monte Carlo Sampling,es the sampling efficiency a big obstacle for any real-time data processing workflow. On the contrary, many deterministic optimizations follow a gradient update and have relatively fast searching speed compared with random move. One attractive realization is to combine two schemes, where people intr
26#
發(fā)表于 2025-3-26 02:23:00 | 只看該作者
Interpret Model Complexity: Trans-Dimensional MCMC Method,eters given the observed azimuthal resistivity measurements. The statistical inversion resolves the local minimum problem in the deterministic methods and tells the uncertainty of model parameters via the statistical distribution. However, the effect of using traditional MCMC methods is challenged w
27#
發(fā)表于 2025-3-26 05:12:14 | 只看該作者
Accelerated Bayesian Inversion Using Parallel Tempering,er, the observation tells us an inadequate performance when sampling a complex model. The decreased sampling efficiency is due to the dimensional changes. Hence, one possible solution comes to make MCMC methods more scalable and to be deployed on a high-performance computing system. The idea brings
28#
發(fā)表于 2025-3-26 11:30:03 | 只看該作者
29#
發(fā)表于 2025-3-26 14:28:47 | 只看該作者
30#
發(fā)表于 2025-3-26 20:20:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 13:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉木萨尔县| 太仆寺旗| 鹿邑县| 洱源县| 海林市| 聂荣县| 肇庆市| 保定市| 临城县| 江门市| 寻甸| 浦江县| 建德市| 罗甸县| 琼海市| 高阳县| 广饶县| 射洪县| 馆陶县| 株洲市| 孟津县| 康乐县| 肇源县| 武陟县| 九龙县| 石河子市| 沈阳市| 邹平县| 南郑县| 永昌县| 土默特左旗| 柘荣县| 芦溪县| 滦南县| 多伦县| 苏尼特右旗| 株洲县| 金湖县| 文成县| 平阳县| 肃南|