找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Statistical Inference Based on Kernel Distribution Function Estimators; Rizky Reza Fauzi,Yoshihiko Maesono Book 2023 The Editor(s) (if app

[復制鏈接]
查看: 50940|回復: 35
樓主
發(fā)表于 2025-3-21 18:40:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Statistical Inference Based on Kernel Distribution Function Estimators
編輯Rizky Reza Fauzi,Yoshihiko Maesono
視頻videohttp://file.papertrans.cn/877/876434/876434.mp4
概述Is a unique book for studies of kernel distribution estimators and their application to statistical inference.Provides basic tools to help enable the study of nonparametric inference.Uses many of the
叢書名稱SpringerBriefs in Statistics
圖書封面Titlebook: Statistical Inference Based on Kernel Distribution Function Estimators;  Rizky Reza Fauzi,Yoshihiko Maesono Book 2023 The Editor(s) (if app
描述.This book presents a study of statistical inferences based on the kernel-type estimators of distribution functions. The inferences involve matters such as quantile estimation, nonparametric tests, and mean residual life expectation, to name just some. Convergence rates for the kernel estimators of density functions are slower than ordinary parametric estimators, which have root-n consistency. If the appropriate kernel function is used, the kernel estimators of the distribution functions recover the root-n consistency, and the inferences based on kernel distribution estimators have root-n consistency. Further, the kernel-type estimator produces smooth estimation results. The estimators based on the empirical distribution function have discrete distribution, and the normal approximation cannot be improved—that is, the validity of the Edgeworth expansion cannot be proved. If the support of the population density function is bounded, there is a boundary problem, namely the estimator does not have consistency near the boundary. The book also contains a study of the mean squared errors of the estimators and the Edgeworth expansion for quantile estimators..
出版日期Book 2023
關鍵詞Nonparametric Inference; Kernel Type Estimator; Distribution Function; Mean Squared Error; Quantile Esti
版次1
doihttps://doi.org/10.1007/978-981-99-1862-1
isbn_softcover978-981-99-1861-4
isbn_ebook978-981-99-1862-1Series ISSN 2191-544X Series E-ISSN 2191-5458
issn_series 2191-544X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Statistical Inference Based on Kernel Distribution Function Estimators影響因子(影響力)




書目名稱Statistical Inference Based on Kernel Distribution Function Estimators影響因子(影響力)學科排名




書目名稱Statistical Inference Based on Kernel Distribution Function Estimators網(wǎng)絡公開度




書目名稱Statistical Inference Based on Kernel Distribution Function Estimators網(wǎng)絡公開度學科排名




書目名稱Statistical Inference Based on Kernel Distribution Function Estimators被引頻次




書目名稱Statistical Inference Based on Kernel Distribution Function Estimators被引頻次學科排名




書目名稱Statistical Inference Based on Kernel Distribution Function Estimators年度引用




書目名稱Statistical Inference Based on Kernel Distribution Function Estimators年度引用學科排名




書目名稱Statistical Inference Based on Kernel Distribution Function Estimators讀者反饋




書目名稱Statistical Inference Based on Kernel Distribution Function Estimators讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:12:08 | 只看該作者
Kernel-Based Nonparametric Tests,ions of their test statistics converge to the same distributions as their unsmoothed counterpart, their improvement in minimizing errors can be proven. Some simulation results illustrating the estimator and the tests’ performances will be presented in the last part of this article.
板凳
發(fā)表于 2025-3-22 02:22:46 | 只看該作者
地板
發(fā)表于 2025-3-22 07:46:31 | 只看該作者
5#
發(fā)表于 2025-3-22 12:15:14 | 只看該作者
Kernel Distribution Function Estimator,r and its properties, a method to reduce the mean integrated squared error for kernel distribution function estimators is also proposed. It can be shown that the asymptotic bias of the proposed method is considerably smaller in the sense of convergence rate than that of the standard one, and even th
6#
發(fā)表于 2025-3-22 15:58:10 | 只看該作者
7#
發(fā)表于 2025-3-22 20:59:00 | 只看該作者
Mean Residual Life Estimator,l density estimation, eliminating the boundary bias problems that occur in the naive kernel estimator of the mean residual life function is needed. Here, the property of bijective transformation is once again utilized to define two boundary-free kernel-based mean residual life function estimators. F
8#
發(fā)表于 2025-3-23 00:23:02 | 只看該作者
Kernel-Based Nonparametric Tests,nown statistical tests are introduced. The three tests consist of Kolmogorov-Smirnov, Cramér-von Mises, and Wilcoxon signed test. Though the distributions of their test statistics converge to the same distributions as their unsmoothed counterpart, their improvement in minimizing errors can be proven
9#
發(fā)表于 2025-3-23 01:57:04 | 只看該作者
Kernel Distribution Function Estimator,e variance of the proposed method is smaller up?to some constants. The idea of this method is using a self-elimination technique between two standard kernel distribution function estimators with different bandwidths, with some helps of exponential and logarithmic expansions. As a result, the mean squared error can be reduced.
10#
發(fā)表于 2025-3-23 08:42:43 | 只看該作者
Kernel Quantile Estimation, is nonstandard since the influence function of the resulting .-statistic explicitly depends on the sample size. We obtain the expansion, justify its validity and demonstrate the numerical gains in using it.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 02:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
高雄市| 乐都县| 沐川县| 东平县| 淮南市| 罗江县| 三门县| 恩平市| 松江区| 阳新县| 德庆县| 綦江县| 永昌县| 白山市| 阳春市| 八宿县| 冕宁县| 耿马| 福海县| 南宁市| 土默特右旗| 青州市| 濮阳县| 平利县| 茶陵县| 老河口市| 雅江县| 嘉峪关市| 资中县| 谢通门县| 雷波县| 白山市| 南充市| 保德县| 德格县| 日土县| 海晏县| 海兴县| 丹巴县| 宁化县| 白玉县|