找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Statistical Field Theory for Neural Networks; Moritz Helias,David Dahmen Book 2020 Springer Nature Switzerland AG 2020 Statistical physics

[復(fù)制鏈接]
查看: 33955|回復(fù): 51
樓主
發(fā)表于 2025-3-21 19:13:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Statistical Field Theory for Neural Networks
編輯Moritz Helias,David Dahmen
視頻videohttp://file.papertrans.cn/877/876416/876416.mp4
概述Provides the first self-contained introduction to field theory for neuronal networks.Presents the main concepts from field theory that are relevant for network dynamics, including diagrammatic techniq
叢書(shū)名稱(chēng)Lecture Notes in Physics
圖書(shū)封面Titlebook: Statistical Field Theory for Neural Networks;  Moritz Helias,David Dahmen Book 2020 Springer Nature Switzerland AG 2020 Statistical physics
描述.This book presents a self-contained introduction to techniques from field theory applied to stochastic and collective dynamics in neuronal networks. These powerful analytical techniques, which are well established in other fields of physics, are the basis of current developments and offer solutions to pressing open problems in theoretical neuroscience and also machine learning. They enable a systematic and quantitative understanding of the dynamics in recurrent and stochastic neuronal networks. ..This book is intended for physicists, mathematicians, and computer scientists and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge of analysis and linear algebra..
出版日期Book 2020
關(guān)鍵詞Statistical physics; Neuronal networks; Dynamic mean-field theory; Diagrammatic techniques; Chaotic netw
版次1
doihttps://doi.org/10.1007/978-3-030-46444-8
isbn_softcover978-3-030-46443-1
isbn_ebook978-3-030-46444-8Series ISSN 0075-8450 Series E-ISSN 1616-6361
issn_series 0075-8450
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書(shū)目名稱(chēng)Statistical Field Theory for Neural Networks影響因子(影響力)




書(shū)目名稱(chēng)Statistical Field Theory for Neural Networks影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Statistical Field Theory for Neural Networks網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Statistical Field Theory for Neural Networks網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Statistical Field Theory for Neural Networks被引頻次




書(shū)目名稱(chēng)Statistical Field Theory for Neural Networks被引頻次學(xué)科排名




書(shū)目名稱(chēng)Statistical Field Theory for Neural Networks年度引用




書(shū)目名稱(chēng)Statistical Field Theory for Neural Networks年度引用學(xué)科排名




書(shū)目名稱(chēng)Statistical Field Theory for Neural Networks讀者反饋




書(shū)目名稱(chēng)Statistical Field Theory for Neural Networks讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:48:27 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:11:57 | 只看該作者
Moritz Helias,David DahmenProvides the first self-contained introduction to field theory for neuronal networks.Presents the main concepts from field theory that are relevant for network dynamics, including diagrammatic techniq
地板
發(fā)表于 2025-3-22 08:32:33 | 只看該作者
978-3-030-46443-1Springer Nature Switzerland AG 2020
5#
發(fā)表于 2025-3-22 10:47:58 | 只看該作者
6#
發(fā)表于 2025-3-22 15:21:24 | 只看該作者
7#
發(fā)表于 2025-3-22 20:25:08 | 只看該作者
8#
發(fā)表于 2025-3-22 22:16:47 | 只看該作者
Probabilities, Moments, Cumulants,the cumulant-generating function. It, correspondingly, introduces moments and cumulants and their mutual connections. These definitions are key to the subsequent concepts, such as the perturbative computation of statistics.
9#
發(fā)表于 2025-3-23 02:04:29 | 只看該作者
Loopwise Expansion in the MSRDJ Formalism,al, introduced in Chap. .. This will allow us to obtain self-consistent solutions for the mean of the process including fluctuation corrections. It also enables the efficient computation of higher order cumulants of the process by decomposing them into vertex functions, as introduced in Chap. ..
10#
發(fā)表于 2025-3-23 08:08:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 05:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赣榆县| 金湖县| 太白县| 禄丰县| 永州市| 梓潼县| 镇雄县| 宁津县| 临城县| 布尔津县| 曲阳县| 和平县| 万荣县| 新巴尔虎右旗| 赤城县| 榕江县| 淮北市| 高州市| 延吉市| 乐都县| 乐安县| 龙陵县| 高雄县| 沁水县| 栾川县| 元阳县| 怀仁县| 舟山市| 宜都市| 永善县| 敦煌市| 康乐县| 余庆县| 辛集市| 巴中市| 昌宁县| 宝山区| 利川市| 娄底市| 双牌县| 安阳市|