找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Statistical Data Analysis and Entropy; Nobuoki Eshima Book 2020 Springer Nature Singapore Pte Ltd. 2020 Entropy-based Approaches for Data

[復(fù)制鏈接]
樓主: mentor
11#
發(fā)表于 2025-3-23 13:42:39 | 只看該作者
Latent Structure Analysis,riables are briefly reviewed. In order to assess test reliability, the entropy coefficient of determination is employed as the entropy coefficient of reliability (ECR) of the test. By using thee artificial examples with 9 manifest response items, the test batteries and the items are assessed with ECR.
12#
發(fā)表于 2025-3-23 13:58:54 | 只看該作者
Entropy-Based Path Analysis,cts are summarized according to the entropy coefficient determination (ECD). The path analysis is demonstrated by using two numerical examples. Finally, a general method for calculating the summary total, direct, and indirect effects is given.
13#
發(fā)表于 2025-3-23 21:57:18 | 只看該作者
14#
發(fā)表于 2025-3-23 23:49:12 | 只看該作者
Analysis of the Association in Two-Way Contingency Tables,g the independence between the binary variables is explained. Third, for analyzing the association in general two-way contingency tables, the RC (.) association model is considered. Properties of the model are discussed from a viewpoint of entropy, and ECC is extended for analyzing the association in the RC (.) association model.
15#
發(fā)表于 2025-3-24 04:16:14 | 只看該作者
Analysis of the Association in Multiway Contingency Tables,xplanatory power of GLMs is discussed. Comparing ECD with several predictive power measures for GLMs, desirable properties of ECD are explained. The asymptotic distribution of the maximum likelihood estimator of ECD is also considered.
16#
發(fā)表于 2025-3-24 08:18:28 | 只看該作者
17#
發(fā)表于 2025-3-24 13:31:10 | 只看該作者
Entropy and Basic Statistics, and/or random variables are introduced and the properties are discussed. To measure the differences between distributions, the Kullback–Leibler (KL) information is explained through a theoretical consideration. In order to treat the association between random variables, the joint entropy and the co
18#
發(fā)表于 2025-3-24 17:52:27 | 只看該作者
19#
發(fā)表于 2025-3-24 21:26:45 | 只看該作者
20#
發(fā)表于 2025-3-25 00:30:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 21:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屏边| 芒康县| 日土县| 精河县| 九江县| 崇文区| 财经| 南投县| 庆城县| 临桂县| 托克逊县| 淮安市| 汾阳市| 万荣县| 镇宁| 江安县| 芜湖县| 佛教| 扎囊县| 高密市| 六安市| 嘉禾县| 达拉特旗| 绵阳市| 乌拉特前旗| 汶上县| 丰宁| 汤阴县| 海原县| 江陵县| 九龙城区| 个旧市| 崇仁县| 清涧县| 新民市| 江达县| 黔西县| 沙田区| 寿光市| 修水县| 滨海县|