找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers; 13th International W Oscar Camara,Esthe

[復(fù)制鏈接]
樓主: 太平間
31#
發(fā)表于 2025-3-27 00:41:35 | 只看該作者
32#
發(fā)表于 2025-3-27 02:45:10 | 只看該作者
Comparison of?Semi- and Un-Supervised Domain Adaptation Methods for?Whole-Heart Segmentationprocesses as the heart tissue adapts to disease. Coronary Computed Tomography Angiography (CCTA) is considered a first line tool for patients at low or intermediate risk of coronary artery disease, while Coronary Magnetic Resonance Angiography (CMRA) is a promising alternative due to the absence of
33#
發(fā)表于 2025-3-27 05:59:57 | 只看該作者
34#
發(fā)表于 2025-3-27 12:02:53 | 只看該作者
An Atlas-Based Analysis of Biventricular Mechanics in Tetralogy of Fallot variations in ventricular shape are sufficient to explain corresponding differences in ventricular wall motion directly, or if they are indirect markers of altered myocardial mechanical properties. This study was conducted in a cohort of patients with repaired tetralogy of Fallot (rTOF) that face l
35#
發(fā)表于 2025-3-27 14:41:59 | 只看該作者
Review of?Data Types and?Model Dimensionality for?Cardiac DTI SMS-Related Artefact Removaleep learning-based Artificial Intelligence is becoming a crucial tool in mitigating some of its drawbacks, such as the long scan times. As it often happens in fast-paced research environments, a lot of emphasis has been put on showing the capability of deep learning while often not enough time has b
36#
發(fā)表于 2025-3-27 21:15:29 | 只看該作者
Improving Echocardiography Segmentation by?Polar Transformationecade, deep learning-based approaches have significantly improved the performance of echocardiogram segmentation. Most deep learning-based methods assume that the image to be processed is rectangular in shape. However, typically echocardiogram images are formed within a sector of a circle, with a si
37#
發(fā)表于 2025-3-28 00:57:42 | 只看該作者
38#
發(fā)表于 2025-3-28 04:44:02 | 只看該作者
39#
發(fā)表于 2025-3-28 07:25:28 | 只看該作者
Unsupervised Echocardiography Registration Through Patch-Based MLPs and?Transformersre relatively noisy compared to other imaging modalities. Traditional (non-learning) registration approaches rely on the iterative optimization of a similarity metric which is usually costly in time complexity. In recent years, convolutional neural network (CNN) based image registration methods have
40#
發(fā)表于 2025-3-28 11:17:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
博爱县| 沙坪坝区| 连云港市| 莆田市| 工布江达县| 永顺县| 宝清县| 登封市| 高雄市| 额尔古纳市| 天等县| 青阳县| 米脂县| 华坪县| 会东县| 车致| 济宁市| 苏州市| 榆树市| 贡嘎县| 汤原县| 衡东县| 乌恰县| 淮南市| 德兴市| 姜堰市| 扎兰屯市| 农安县| 桐梓县| 博乐市| 长阳| 漾濞| 泸水县| 深圳市| 唐河县| 郎溪县| 沧州市| 丰台区| 林芝县| 鹤岗市| 黄石市|