找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Statistical Analysis in Proteomics; Klaus Jung Book 2016 Springer Science+Business Media New York 2016 Data analysis.High-throughput data.

[復(fù)制鏈接]
查看: 6704|回復(fù): 51
樓主
發(fā)表于 2025-3-21 19:09:20 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Statistical Analysis in Proteomics
編輯Klaus Jung
視頻videohttp://file.papertrans.cn/877/876324/876324.mp4
概述Includes cutting-edge methods for the study of the statistical analysis of proteomics.Provides step-by-step detail essential for reproducible results.Contains key notes and implementation advice from
叢書名稱Methods in Molecular Biology
圖書封面Titlebook: Statistical Analysis in Proteomics;  Klaus Jung Book 2016 Springer Science+Business Media New York 2016 Data analysis.High-throughput data.
描述.This valuable collection aims to provide a collection of frequently used statistical methods in the field of proteomics. Although there is a large overlap between statistical methods for the different ‘omics’ fields, methods for analyzing data from proteomics experiments need their own specific adaptations. To satisfy that need, .Statistical Analysis in Proteomics. focuses on the planning of proteomics experiments, the preprocessing and analysis of the data, the integration of proteomics data with other high-throughput data, as well as some special topics. Written for the highly successful .Methods in Molecular Biology. series, the chapters contain the kind of detail and expert implementation advice that makes for a smooth transition to the laboratory..Practical and authoritative, .Statistical Analysis in Proteomics. serves as an ideal reference for statisticians involved in the planning and analysis of proteomics experiments, beginners as well as advanced researchers, and also for biologists, biochemists, and medical researchers who want to learn more about the statistical opportunities in the analysis of proteomics data..
出版日期Book 2016
關(guān)鍵詞Data analysis; High-throughput data; Omics; Preprocessing; Statistical methods
版次1
doihttps://doi.org/10.1007/978-1-4939-3106-4
isbn_softcover978-1-4939-7987-5
isbn_ebook978-1-4939-3106-4Series ISSN 1064-3745 Series E-ISSN 1940-6029
issn_series 1064-3745
copyrightSpringer Science+Business Media New York 2016
The information of publication is updating

書目名稱Statistical Analysis in Proteomics影響因子(影響力)




書目名稱Statistical Analysis in Proteomics影響因子(影響力)學(xué)科排名




書目名稱Statistical Analysis in Proteomics網(wǎng)絡(luò)公開度




書目名稱Statistical Analysis in Proteomics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Statistical Analysis in Proteomics被引頻次




書目名稱Statistical Analysis in Proteomics被引頻次學(xué)科排名




書目名稱Statistical Analysis in Proteomics年度引用




書目名稱Statistical Analysis in Proteomics年度引用學(xué)科排名




書目名稱Statistical Analysis in Proteomics讀者反饋




書目名稱Statistical Analysis in Proteomics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:04:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:45:10 | 只看該作者
Methods in Molecular Biologyhttp://image.papertrans.cn/s/image/876324.jpg
地板
發(fā)表于 2025-3-22 06:43:30 | 只看該作者
5#
發(fā)表于 2025-3-22 11:10:52 | 只看該作者
Visualization and Differential Analysis of Protein Expression Data Using RData analysis is essential to derive meaningful conclusions from proteomic data. This chapter describes ways of performing common data visualization and differential analysis tasks on gel-based proteomic datasets using a freely available statistical software package (R). A workflow followed is illustrated using a synthetic dataset as example.
6#
發(fā)表于 2025-3-22 15:45:45 | 只看該作者
Klaus JungIncludes cutting-edge methods for the study of the statistical analysis of proteomics.Provides step-by-step detail essential for reproducible results.Contains key notes and implementation advice from
7#
發(fā)表于 2025-3-22 17:46:49 | 只看該作者
8#
發(fā)表于 2025-3-22 22:46:18 | 只看該作者
Tsung-Heng Tsai,Minkun Wang,Habtom W. Ressomve numerical and spice level simulations.Well balanced topic.Semiconductor power electronics plays a dominant role due its increased efficiency and high reliability in various domains including the medium and high electrical drives, automotive and aircraft applications, electrical power conversion,
9#
發(fā)表于 2025-3-23 01:25:33 | 只看該作者
Antonella Chiechive numerical and spice level simulations.Well balanced topic.Semiconductor power electronics plays a dominant role due its increased efficiency and high reliability in various domains including the medium and high electrical drives, automotive and aircraft applications, electrical power conversion,
10#
發(fā)表于 2025-3-23 06:18:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 20:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
保定市| 锡林郭勒盟| 永和县| 南通市| 太湖县| 安化县| 南川市| 永寿县| 刚察县| 锡林郭勒盟| 习水县| 武隆县| 沙洋县| 南开区| 商南县| 四川省| 新野县| 阜宁县| 瓦房店市| 长葛市| 潜山县| 中卫市| 陕西省| 聊城市| 固阳县| 德令哈市| 子长县| 永泰县| 玉屏| 灵宝市| 文化| 慈利县| 马边| 迁西县| 蒲江县| 普洱| 光山县| 九寨沟县| 绥化市| 班戈县| 盖州市|