找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Statistical Analysis and Forecasting of Economic Structural Change; Peter Hackl Book 1989 Springer-Verlag Berlin Heidelberg 1989 data anal

[復(fù)制鏈接]
樓主: 減輕
41#
發(fā)表于 2025-3-28 16:49:43 | 只看該作者
42#
發(fā)表于 2025-3-28 22:50:12 | 只看該作者
The Use of Graphical Displays in the Analysis of Structural Changels; (b) progressive change in the variability of the residuals; (c) a curved regression of residuals on fitted values or the number of cases; and (d) the subsets of successive residuals with significantly different configuration. In this chapter we concentrate on (d) which indicates possible structu
43#
發(fā)表于 2025-3-29 00:26:53 | 只看該作者
Adaptive Estimation and Structural Change in Regression and Time Series Models introduces time-varying coefficients explicitly and assumes that the coefficients follow certain autoregressive integrated moving average time series processes. We show how these time-varying coefficient models can be written in state space form, we illustrate how the Kalman filter approach can be
44#
發(fā)表于 2025-3-29 03:29:28 | 只看該作者
An Adaptive Method of Regression Analysisally weighted moving averages (EWMA). The coefficients’ trajectories imply possible improvements of the model specification. Aspects of suitable preparation of the time series, such as the elimination of time trends and parameter estimation, are also considered. The method is illustrated on the basi
45#
發(fā)表于 2025-3-29 07:41:21 | 只看該作者
Changing and Random Coefficient Models. A Surveyccepted parameter variation structure one may classify such models into two main groups: models with variable but nonstochastic parameters and models with randomly varying coefficients. The latter group consists of two types — models where coefficients are generated from stationary and models in whi
46#
發(fā)表于 2025-3-29 15:08:52 | 只看該作者
Nonparametric Estimation of Time-Varying Parametersle random variable with zero mean and unit variance, .. is an observable .-vector-valued variable, and .. and .. are, respectively, unobservable scalar and .-vector-valued parameters. No model (stochastic or nonstochastic) is assumed for the .. or ..; instead they are assumed to be smoothly varying
47#
發(fā)表于 2025-3-29 17:37:51 | 只看該作者
48#
發(fā)表于 2025-3-29 22:09:00 | 只看該作者
Adaptive Estimation and Structural Change in Regression and Time Series Modelse the coefficient estimates. It is shown how these parameters can be estimated from historic observations. These parameters determine how adaptive the resulting coefficient estimates are to changes in the coefficients.
49#
發(fā)表于 2025-3-30 03:28:06 | 只看該作者
50#
發(fā)表于 2025-3-30 04:32:19 | 只看該作者
What Can Statistics Contribute to the Analysis of Economic Structural Change?c models. In addition, it is noted that major changes in the sample correlations between variables, rather than being a nuisance for econometric model builders, is in fact an important stimulus to model evaluation and improvement.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黑龙江省| 沈丘县| 延庆县| 江陵县| 海盐县| 侯马市| 武安市| 香河县| 荃湾区| 台山市| 内丘县| 武隆县| 胶州市| 江源县| 美姑县| 庆元县| 安塞县| 东山县| 榆林市| 河南省| 澄江县| 大同市| 余干县| 隆德县| 开原市| 连州市| 青铜峡市| 光泽县| 宁城县| 洛扎县| 新河县| 古交市| 高淳县| 来凤县| 巫山县| 疏附县| 买车| 北川| 肃宁县| 海兴县| 九龙城区|