找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Stationary Sequences and Random Fields; Murray Rosenblatt Book 1985 Birkh?user Boston, Inc. 1985 Banach Space.Hilbert space.Likelihood.Max

[復(fù)制鏈接]
樓主: microbe
11#
發(fā)表于 2025-3-23 11:35:06 | 只看該作者
12#
發(fā)表于 2025-3-23 17:01:26 | 只看該作者
13#
發(fā)表于 2025-3-23 21:56:59 | 只看該作者
978-0-8176-3264-9Birkh?user Boston, Inc. 1985
14#
發(fā)表于 2025-3-24 02:05:47 | 只看該作者
15#
發(fā)表于 2025-3-24 03:42:00 | 只看該作者
16#
發(fā)表于 2025-3-24 06:33:25 | 只看該作者
17#
發(fā)表于 2025-3-24 14:33:46 | 只看該作者
18#
發(fā)表于 2025-3-24 17:53:18 | 只看該作者
Density and Regression Estimates,les. Our object is not that of generality, rather that of understanding. Later on, it will be seen that there are counterparts of these results for independent identically distributed random variables in the domain of suitably restricted stationary processes.
19#
發(fā)表于 2025-3-24 22:25:47 | 只看該作者
Stationary Processes,ose covariance function depends only on the difference in the times at which the observations are made. The importance of this assumption is due to the fact that it implies that a Fourier (or harmonic) analysis of both the covariance function and the process itself can be carried out. These results
20#
發(fā)表于 2025-3-25 01:04:21 | 只看該作者
Quadratic Forms, Limit Theorems and Mixing Conditions,e estimates under appropriate conditions when sampling from a stationary process. Related quadratic forms are also considered. For this, we need to derive appropriate types of central limit theorems that will be employed in this chapter as well as in derivations in later chapters. However, in most c
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赫章县| 闵行区| 九龙坡区| 石城县| 济南市| 娄烦县| 隆林| 武陟县| 云梦县| 克东县| 资阳市| 武乡县| 广丰县| 镇安县| SHOW| 修武县| 增城市| 华池县| 林西县| 柘荣县| 宜城市| 遵义县| 安塞县| 凌云县| 呈贡县| 黄大仙区| 佳木斯市| 巨野县| 和顺县| 四平市| 荥阳市| 黄浦区| 鹿泉市| 彭阳县| 金平| 东明县| 兴安盟| 抚顺县| 四平市| 周至县| 辽阳市|