找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stable Homotopy Theory; Lectures delivered a J. Frank Adams Book 19641st edition Springer-Verlag Berlin Heidelberg 1964 Division.Homologica

[復(fù)制鏈接]
樓主: Baleful
21#
發(fā)表于 2025-3-25 04:40:13 | 只看該作者
22#
發(fā)表于 2025-3-25 09:07:35 | 只看該作者
Book 19641st edition(‘IT"r(SO)) = 2m where m 1s exactly this denominator. status of conJectuI‘e ~ No proof in sight. Q9njecture Eo If I‘ = 8k or 8k + 1, so that ‘IT"r(SO) = Z2‘ then J(‘IT"r(SO)) = 2 , 2 status of conjecture: Probably provable, but this is work in progl‘ess.
23#
發(fā)表于 2025-3-25 13:41:52 | 只看該作者
24#
發(fā)表于 2025-3-25 18:52:50 | 只看該作者
25#
發(fā)表于 2025-3-25 23:10:50 | 只看該作者
26#
發(fā)表于 2025-3-26 04:10:01 | 只看該作者
Book 19641st editioneory where we strongly suspect that there is something systematic going on, but where we are not yet sure what the system is. The first question concerns the stable J-homomorphism. I recall that this is a homomorphism J: ~ (SQ) ~ ~S = ~ + (Sn), n large. r r r n It is of interest to the differential
27#
發(fā)表于 2025-3-26 05:20:26 | 只看該作者
Primary operations,uch as the celebrated Steenrod square. I recall that this is a homomorphism . defined for each pair (X,Y) and for all non-negative integers i and n. (H. is to be interpreted as singular cohomology.) The Steenrod square enjoys the following properties:
28#
發(fā)表于 2025-3-26 09:18:29 | 只看該作者
Primary operations,ow that a proposed geometric construction is impossible, you have to find a topological invariant which shows the impossibility. Among topological invariants we meet first the homology and cohomology groups, with their additive and multiplicative structure. Afte that we meet cohomology operations, s
29#
發(fā)表于 2025-3-26 15:32:03 | 只看該作者
30#
發(fā)表于 2025-3-26 19:12:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 00:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黑龙江省| 海晏县| 沙坪坝区| 濮阳县| 邵阳市| 盐边县| 甘洛县| 玛纳斯县| 图木舒克市| 茌平县| 乐都县| 钦州市| 虞城县| 忻州市| 上犹县| 庆城县| 象州县| 樟树市| 新竹市| 勐海县| 漳州市| 鸡泽县| 盐边县| 昌平区| 云梦县| 区。| 长泰县| 夏邑县| 赤水市| 吴桥县| 永吉县| 芦溪县| 乌恰县| 嫩江县| 西平县| 榕江县| 施秉县| 耒阳市| 嘉祥县| 海丰县| 嘉峪关市|