找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stable Homotopy Theory; Lectures delivered a J. Frank Adams Book 19641st edition Springer-Verlag Berlin Heidelberg 1964 Division.Homologica

[復(fù)制鏈接]
樓主: Baleful
21#
發(fā)表于 2025-3-25 04:40:13 | 只看該作者
22#
發(fā)表于 2025-3-25 09:07:35 | 只看該作者
Book 19641st edition(‘IT"r(SO)) = 2m where m 1s exactly this denominator. status of conJectuI‘e ~ No proof in sight. Q9njecture Eo If I‘ = 8k or 8k + 1, so that ‘IT"r(SO) = Z2‘ then J(‘IT"r(SO)) = 2 , 2 status of conjecture: Probably provable, but this is work in progl‘ess.
23#
發(fā)表于 2025-3-25 13:41:52 | 只看該作者
24#
發(fā)表于 2025-3-25 18:52:50 | 只看該作者
25#
發(fā)表于 2025-3-25 23:10:50 | 只看該作者
26#
發(fā)表于 2025-3-26 04:10:01 | 只看該作者
Book 19641st editioneory where we strongly suspect that there is something systematic going on, but where we are not yet sure what the system is. The first question concerns the stable J-homomorphism. I recall that this is a homomorphism J: ~ (SQ) ~ ~S = ~ + (Sn), n large. r r r n It is of interest to the differential
27#
發(fā)表于 2025-3-26 05:20:26 | 只看該作者
Primary operations,uch as the celebrated Steenrod square. I recall that this is a homomorphism . defined for each pair (X,Y) and for all non-negative integers i and n. (H. is to be interpreted as singular cohomology.) The Steenrod square enjoys the following properties:
28#
發(fā)表于 2025-3-26 09:18:29 | 只看該作者
Primary operations,ow that a proposed geometric construction is impossible, you have to find a topological invariant which shows the impossibility. Among topological invariants we meet first the homology and cohomology groups, with their additive and multiplicative structure. Afte that we meet cohomology operations, s
29#
發(fā)表于 2025-3-26 15:32:03 | 只看該作者
30#
發(fā)表于 2025-3-26 19:12:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 04:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绍兴市| 霍林郭勒市| 兴城市| 拜城县| 麻城市| 库车县| 江北区| 屏边| 平远县| 宜都市| 龙岩市| 略阳县| 南宁市| 全椒县| 原平市| 新津县| 壤塘县| 芜湖县| 仁寿县| 彭泽县| 腾冲县| 汪清县| 新乡县| 旬阳县| 舟山市| 泊头市| 玛纳斯县| 绥宁县| 平陆县| 诏安县| 宾阳县| 葵青区| 泊头市| 香河县| 如皋市| 临邑县| 易门县| 唐海县| 综艺| 基隆市| 新乐市|