找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Spontaneous Formation of Space-Time Structures and Criticality; T. Riste,D. Sherrington Book 1991 Springer Science+Business Media Dordrech

[復(fù)制鏈接]
樓主: estradiol
51#
發(fā)表于 2025-3-30 11:33:16 | 只看該作者
Localized Structures and Solitary Waves Excited by Interfacial Stresses,Arguments and numerical evidence are provided for the appearance of solitary waves driven by surface tension tractions (Marangoni effect)
52#
發(fā)表于 2025-3-30 15:54:57 | 只看該作者
53#
發(fā)表于 2025-3-30 20:26:28 | 只看該作者
Spontaneous Formation of Space-Time Structures and Criticality978-94-011-3508-5Series ISSN 1389-2185
54#
發(fā)表于 2025-3-30 22:08:38 | 只看該作者
55#
發(fā)表于 2025-3-31 01:06:05 | 只看該作者
56#
發(fā)表于 2025-3-31 05:16:16 | 只看該作者
57#
發(fā)表于 2025-3-31 09:47:15 | 只看該作者
Dynamical Aspects of Sandpile Cellular Automata,rom the assumption that the instantaneous dissipation rate of the individual avalanches obeys a simple scaling relation. Primarily, the results of our work show that the flow of sand down the slope does not have a 1/. power spectrum in any dimension. The power spectrum behaves as 1/.. in all the dimensions considered.
58#
發(fā)表于 2025-3-31 16:26:50 | 只看該作者
Experiments and Simulations Modeling Earthquakes,the Gutenberg-Richter law and the force time-series exhibits 1/.. noise. Our system reaches a self-organized critical state with power-law scaling both in the spatial and the time domain. We introduce a new . cellular-automaton that describes these observations.
59#
發(fā)表于 2025-3-31 17:30:02 | 只看該作者
1/f Noise, Lattice Gases, and Diffusion,e of . depends on the definition of the dynamics of the models. Models with deterministic dynamics have . = 1, whereas for stochastic dynamics . = 1.5. The scaling relation α + . = 3 where α is the lifetime exponent is found to be fulfilled approximately. A discussion of the numerical observations in terms of driven diffusion equations is given.
60#
發(fā)表于 2025-4-1 01:46:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 17:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华蓥市| 合水县| 韶关市| 永修县| 石景山区| 天全县| 张家港市| 封丘县| 德阳市| 舒兰市| 惠来县| 响水县| 泸西县| 芜湖县| 鄢陵县| 台江县| 新化县| 永嘉县| 高唐县| 闽侯县| 汕头市| 湘西| 永嘉县| 喀喇| 全椒县| 岳西县| 翁源县| 灵宝市| 榆树市| 三都| 泊头市| 香河县| 乾安县| 甘德县| 和林格尔县| 抚宁县| 沂水县| 内丘县| 绥化市| 麻阳| 吉木萨尔县|