找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Sphere Packings, Lattices and Groups; J. H. Conway,N. J. A. Sloane Book 19932nd edition Springer Science+Business Media New York 1993 Dime

[復(fù)制鏈接]
樓主: 根深蒂固
21#
發(fā)表于 2025-3-25 04:49:04 | 只看該作者
J. H. Conway,A. M. Odlyzko,N. J. A. Sloaneird edition) retains the topical structure familiar from its predecessors but has been substantially rewritten, edited and updated to account for the significant body of results that have emerged in the twenty-first century—including developments in:.the existence and uniqueness of solutions;.impact
22#
發(fā)表于 2025-3-25 09:20:46 | 只看該作者
23#
發(fā)表于 2025-3-25 15:08:24 | 只看該作者
Further Connections Between Codes and Lattices,This chapter contains further investigations of the connections between codes and sphere packings. Constructions A and B of Chapter 5 are analyzed in greater detail and are generalized to complex lattices. We also study self-dual codes and lattices and their weight enumerators and theta series.
24#
發(fā)表于 2025-3-25 18:26:28 | 只看該作者
A Characterization of the Leech Lattice,We give a short proof that Leech’s remarkable lattice is characterized by some of its simplest properties.
25#
發(fā)表于 2025-3-25 21:41:29 | 只看該作者
Bounds on Kissing Numbers,Upper bounds are given on the maximal number, τ., of nonoverlapping unit spheres that can touch a unit sphere in .-dimensional Euclidean space, for . ? 24. In particular it is shown that τ. = 240 and τ. = 196560.
26#
發(fā)表于 2025-3-26 00:19:15 | 只看該作者
Enumeration of Unimodular Lattices,In this chapter we state explicit formulae for the Minkowski-Siegel mass constants for unimodular lattices. We give Niemeier’s list of 24-dimensional even unimodular lattices, use the mass constant to verify that it is correct, and then enumerate all unimodular lattices of dimension . ? 23.
27#
發(fā)表于 2025-3-26 06:11:18 | 只看該作者
The 24-Dimensional Odd Unimodular Lattices,This chapter completes the classification of the 24-dimensional unimodular lattices by enumerating the odd lattices. These are in one-to-one correspondence with neighboring pairs of Niemeier lattices.
28#
發(fā)表于 2025-3-26 09:52:45 | 只看該作者
Even Unimodular 24-Dimensional Lattices,Niemeier’s classification of even unimodular 24-dimensional lattices is simplified. The methods involve the theory of modular forms, algebraic coding, and root systems.
29#
發(fā)表于 2025-3-26 14:53:12 | 只看該作者
30#
發(fā)表于 2025-3-26 19:42:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 05:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定西市| 阜南县| 巫山县| 昭平县| 额尔古纳市| 渭源县| 汾西县| 安溪县| 刚察县| 杭锦旗| 靖远县| 南安市| 大邑县| 大渡口区| 宜州市| 屯留县| 赤城县| 仙游县| 凌海市| 壶关县| 堆龙德庆县| 石台县| 板桥市| 本溪市| 绥滨县| 左权县| 闻喜县| 洪湖市| 军事| 楚雄市| 郯城县| 五台县| 宁乡县| 宜丰县| 清远市| 酒泉市| 嘉兴市| 平乐县| 龙岩市| 平武县| 久治县|