找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Spectral Geometry and Inverse Scattering Theory; Huaian Diao,Hongyu Liu Book 2023 The Editor(s) (if applicable) and The Author(s), under e

[復制鏈接]
樓主: Exaltation
31#
發(fā)表于 2025-3-26 22:13:30 | 只看該作者
32#
發(fā)表于 2025-3-27 01:45:48 | 只看該作者
33#
發(fā)表于 2025-3-27 08:49:08 | 只看該作者
34#
發(fā)表于 2025-3-27 12:23:28 | 只看該作者
Stability for Inverse Electromagnetic Obstacle Scattering Problems,In this chapter, we deal with the stability issue for the inverse obstacle problem associated with the electromagnetic scattering. We follow the treatment in [.] on a quantitative path argument. We are concerned with the electromagnetic scattering problem, in the time-harmonic case, which is governed by the Maxwell systemas follows.
35#
發(fā)表于 2025-3-27 13:58:14 | 只看該作者
,Geometric Structures of Helmholtz’s Transmission Eigenfunctions with General Transmission ConditionLet . be a bounded Lipschitz domain in ., .?=?2, 3, and .?∈?.(.) and .?∈?.(.) be possibly complex-valued functions. Consider the following interior transmission eigenvalue problem with a conductive boundary condition for ., .?∈?.(.)
36#
發(fā)表于 2025-3-27 19:18:15 | 只看該作者
37#
發(fā)表于 2025-3-27 23:28:25 | 只看該作者
Huaian Diao,Hongyu LiuComprehensive treatment of inverse scattering problems; associates with acoustic, electromagnetic & elastic waves.Includes discussions on the geometrical inverse shape problems by minimal measurements
38#
發(fā)表于 2025-3-28 04:09:50 | 只看該作者
http://image.papertrans.cn/s/image/873826.jpg
39#
發(fā)表于 2025-3-28 09:21:26 | 只看該作者
40#
發(fā)表于 2025-3-28 13:10:55 | 只看該作者
Path Argument for Inverse Acoustic and Electromagnetic Obstacle Scattering Problems,nd . to represent the incident, scattered and total field, respectively, where .?=?.?+?. and . with . being the incident direction and .?>?0 being the wave number. Let . be an impenetrable obstacle, where . is a general compact set in . with an open connect complement ..
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 14:25
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
九江县| 常德市| 固始县| 闸北区| 邵东县| 永年县| 新乡市| 丁青县| 承德县| 沽源县| 宜兰县| 义乌市| 吕梁市| 辛集市| 永仁县| 石首市| 涞源县| 达州市| 开原市| 千阳县| 台山市| 乐安县| 吕梁市| 阜平县| 洛阳市| 凤冈县| 元氏县| 莱芜市| 习水县| 英吉沙县| 泸定县| 班戈县| 府谷县| 文水县| 广西| 平罗县| 耿马| 南和县| 东乡| 博兴县| 瑞安市|