找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Spectral Action in Noncommutative Geometry; Micha? Eckstein,Bruno Iochum Book 2018 The Author(s) 2018 Spectral triples.Mellin transforms.a

[復(fù)制鏈接]
查看: 44246|回復(fù): 36
樓主
發(fā)表于 2025-3-21 18:22:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Spectral Action in Noncommutative Geometry
編輯Micha? Eckstein,Bruno Iochum
視頻videohttp://file.papertrans.cn/874/873806/873806.mp4
叢書(shū)名稱SpringerBriefs in Mathematical Physics
圖書(shū)封面Titlebook: Spectral Action in Noncommutative Geometry;  Micha? Eckstein,Bruno Iochum Book 2018 The Author(s) 2018 Spectral triples.Mellin transforms.a
描述What is spectral action, how to compute it and what are the known examples? This book offers a guided tour through the mathematical habitat of noncommutative geometry à la Connes, deliberately unveiling the answers to these questions..After a brief preface flashing the panorama of the spectral approach, a concise primer on spectral triples is given. Chapter 2 is designed to serve as a toolkit for computations. The third chapter offers an in-depth view into the subtle links between the asymptotic expansions of traces of heat operators and meromorphic extensions of the associated spectral zeta functions. Chapter 4 studies the behaviour of the spectral action under fluctuations by gauge potentials. A subjective list of open problems in the field is spelled out in the fifth Chapter. The book concludes with an appendix including some auxiliary tools from geometry and analysis, along with examples of spectral geometries..The book servesboth as a compendium for researchers in the domain of noncommutative geometry and an invitation to mathematical physicists looking for new concepts..
出版日期Book 2018
關(guān)鍵詞Spectral triples; Mellin transforms; action functional; noncommutative geometry; almost-commutative geom
版次1
doihttps://doi.org/10.1007/978-3-319-94788-4
isbn_softcover978-3-319-94787-7
isbn_ebook978-3-319-94788-4Series ISSN 2197-1757 Series E-ISSN 2197-1765
issn_series 2197-1757
copyrightThe Author(s) 2018
The information of publication is updating

書(shū)目名稱Spectral Action in Noncommutative Geometry影響因子(影響力)




書(shū)目名稱Spectral Action in Noncommutative Geometry影響因子(影響力)學(xué)科排名




書(shū)目名稱Spectral Action in Noncommutative Geometry網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Spectral Action in Noncommutative Geometry網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Spectral Action in Noncommutative Geometry被引頻次




書(shū)目名稱Spectral Action in Noncommutative Geometry被引頻次學(xué)科排名




書(shū)目名稱Spectral Action in Noncommutative Geometry年度引用




書(shū)目名稱Spectral Action in Noncommutative Geometry年度引用學(xué)科排名




書(shū)目名稱Spectral Action in Noncommutative Geometry讀者反饋




書(shū)目名稱Spectral Action in Noncommutative Geometry讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:46:01 | 只看該作者
SpringerBriefs in Mathematical Physicshttp://image.papertrans.cn/s/image/873806.jpg
板凳
發(fā)表于 2025-3-22 00:25:24 | 只看該作者
地板
發(fā)表于 2025-3-22 05:57:17 | 只看該作者
5#
發(fā)表于 2025-3-22 11:14:35 | 只看該作者
6#
發(fā)表于 2025-3-22 15:42:42 | 只看該作者
The Dwelling of the Spectral Action,notion of a spectral triple. We will, however, exclusively focus on the aspects of the structure, which are relevant for the spectral action computations. These include i.a. the abstract pseudodifferential calculus, the dimension spectrum and noncommutative integrals, based on both the Wodzicki resi
7#
發(fā)表于 2025-3-22 18:30:48 | 只看該作者
8#
發(fā)表于 2025-3-22 22:20:46 | 只看該作者
Analytic Properties of Spectral Functions,e also learned, in Sect.?., how to exploit the Laplace transform to compute the spectral action from a given heat trace. In this chapter we further explore the connections between the spectral functions unravelling the intimate relationship between the meromorphic continuation of a zeta function and
9#
發(fā)表于 2025-3-23 04:25:51 | 只看該作者
10#
發(fā)表于 2025-3-23 07:51:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 18:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遵化市| 长子县| 石阡县| 新宾| 城步| 牡丹江市| 福海县| 佛坪县| 团风县| 科尔| 虹口区| 堆龙德庆县| 安丘市| 灵丘县| 浮梁县| 潼关县| 清流县| 荃湾区| 新密市| 西城区| 利辛县| 香港| 延安市| 溧水县| 慈溪市| 永州市| 哈密市| 万全县| 介休市| 新巴尔虎右旗| 天津市| 商水县| 轮台县| 呼和浩特市| 峡江县| 安达市| 襄樊市| 彭州市| 会泽县| 通海县| 陕西省|