找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Spaces of Continuous Functions; G.L.M. Groenewegen,A.C.M. van Rooij Book 2016 Atlantis Press and the author(s) 2016 Spaces of Continuous F

[復制鏈接]
樓主: minutia
31#
發(fā)表于 2025-3-26 22:01:12 | 只看該作者
,Yosida’s Representation Theorem,Our main result, as mentioned in the preamble to Chap. ., is Yosida’s Theorem, characterizing the Riesz spaces that are isomorphic to .(.) for some compact Hausdorff space .. At the background we have Alaoglu’s Theorem, giving us the space . we need.
32#
發(fā)表于 2025-3-27 02:39:53 | 只看該作者
,The Stone-?ech Compactification,When dealing with a metric space it is often useful to form its completion. Similarly, it may be useful to embed a topological space . in a compact Hausdorff space, preferably as a dense subset.
33#
發(fā)表于 2025-3-27 06:30:23 | 只看該作者
Evaluations,Let . be a topological space.
34#
發(fā)表于 2025-3-27 12:49:04 | 只看該作者
35#
發(fā)表于 2025-3-27 15:02:05 | 只看該作者
The Riesz Representation Theorem,The integral of a continuous function on . may be viewed as the average value of that function. Sometimes it is desirable to have at one’s disposal a method of averaging functions on . that gives different weights to different parts of the interval.
36#
發(fā)表于 2025-3-27 19:19:47 | 只看該作者
Banach Algebras,For compact ., .(.) is an ordered vector space. Yosida’s Theorem characterizes those ordered vector spaces that are “isomorphic” with a .(.). In this chapter we obtain an analogous result for a multiplication instead of an ordering.
37#
發(fā)表于 2025-3-28 01:59:58 | 只看該作者
38#
發(fā)表于 2025-3-28 05:52:42 | 只看該作者
39#
發(fā)表于 2025-3-28 09:25:07 | 只看該作者
40#
發(fā)表于 2025-3-28 12:39:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 20:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
昌吉市| 嘉义县| 邮箱| 莫力| 齐齐哈尔市| 应用必备| 台北县| 漳州市| 襄汾县| 通江县| 新巴尔虎左旗| 九龙坡区| 淮滨县| 浦北县| 册亨县| 南京市| 澄江县| 调兵山市| 民勤县| 婺源县| 靖远县| 即墨市| 宜兰市| 大丰市| 桂阳县| 昌吉市| 马公市| 辽中县| 英山县| 恭城| 太谷县| 灯塔市| 湘潭县| 六安市| 登封市| 兖州市| 道孚县| 共和县| 海原县| 石楼县| 太仓市|