找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Spaces of Continuous Functions; G.L.M. Groenewegen,A.C.M. van Rooij Book 2016 Atlantis Press and the author(s) 2016 Spaces of Continuous F

[復(fù)制鏈接]
樓主: minutia
31#
發(fā)表于 2025-3-26 22:01:12 | 只看該作者
,Yosida’s Representation Theorem,Our main result, as mentioned in the preamble to Chap. ., is Yosida’s Theorem, characterizing the Riesz spaces that are isomorphic to .(.) for some compact Hausdorff space .. At the background we have Alaoglu’s Theorem, giving us the space . we need.
32#
發(fā)表于 2025-3-27 02:39:53 | 只看該作者
,The Stone-?ech Compactification,When dealing with a metric space it is often useful to form its completion. Similarly, it may be useful to embed a topological space . in a compact Hausdorff space, preferably as a dense subset.
33#
發(fā)表于 2025-3-27 06:30:23 | 只看該作者
Evaluations,Let . be a topological space.
34#
發(fā)表于 2025-3-27 12:49:04 | 只看該作者
35#
發(fā)表于 2025-3-27 15:02:05 | 只看該作者
The Riesz Representation Theorem,The integral of a continuous function on . may be viewed as the average value of that function. Sometimes it is desirable to have at one’s disposal a method of averaging functions on . that gives different weights to different parts of the interval.
36#
發(fā)表于 2025-3-27 19:19:47 | 只看該作者
Banach Algebras,For compact ., .(.) is an ordered vector space. Yosida’s Theorem characterizes those ordered vector spaces that are “isomorphic” with a .(.). In this chapter we obtain an analogous result for a multiplication instead of an ordering.
37#
發(fā)表于 2025-3-28 01:59:58 | 只看該作者
38#
發(fā)表于 2025-3-28 05:52:42 | 只看該作者
39#
發(fā)表于 2025-3-28 09:25:07 | 只看該作者
40#
發(fā)表于 2025-3-28 12:39:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 21:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
炎陵县| 大同市| 三台县| 辉南县| 宜川县| 资源县| 青铜峡市| 阳山县| 娄烦县| 双峰县| 河北省| 德兴市| 海城市| 宁都县| 全南县| 牡丹江市| 广宗县| 玉山县| 龙口市| 都匀市| 乐昌市| 海淀区| 高邑县| 休宁县| 阳东县| 苏尼特左旗| 固安县| 阿瓦提县| 张家港市| 庆云县| 宁津县| 冀州市| 衡阳市| 赣榆县| 广东省| 体育| 兴文县| 潼关县| 恩平市| 崇州市| 宁武县|