找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Sound Topology, Duality, Coherence and Wave-Mixing; An Introduction to t Pierre Deymier,Keith Runge Book 2017 Springer International Publis

[復(fù)制鏈接]
查看: 39250|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:44:30 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Sound Topology, Duality, Coherence and Wave-Mixing
副標題An Introduction to t
編輯Pierre Deymier,Keith Runge
視頻videohttp://file.papertrans.cn/873/872037/872037.mp4
概述Provides an introduction to the emerging field of topological waves in phononic and acoustic metamaterials.Employs a multidisciplinary approach incorporating insights from nonconventional development
叢書名稱Springer Series in Solid-State Sciences
圖書封面Titlebook: Sound Topology, Duality, Coherence and Wave-Mixing; An Introduction to t Pierre Deymier,Keith Runge Book 2017 Springer International Publis
描述.This book offers an essential introduction to the notions of sound wave topology, duality, coherence and wave-mixing, which constitute the emerging new science of sound. It includes general principles and specific examples that illuminate new non-conventional forms of sound (sound topology), unconventional quantum-like behavior of phonons (duality), radical linear and nonlinear phenomena associated with loss and its control (coherence), and exquisite effects that emerge from the interaction of sound with other physical and biological waves (wave mixing).?. .The book provides the reader with the foundations needed to master these complex notions through simple yet meaningful examples. General principles for unraveling and describing the topology of acoustic wave functions in the space of their Eigen values are presented. These principles are then applied to uncover intrinsic and extrinsic approaches to achieving non-conventional topologies by breaking the time reversal symmetry of acoustic waves. Symmetry breaking can impart topological immunity to wave degradation from imperfection scattering and catalyze controlled coherence. In the intrinsic case and the phonon representation of
出版日期Book 2017
關(guān)鍵詞Acoustic Metamaterials; Topological Insulator; Non-Reciprocal Wave Propagation; Nonlinear Acoustic Wave
版次1
doihttps://doi.org/10.1007/978-3-319-62380-1
isbn_softcover978-3-319-87305-3
isbn_ebook978-3-319-62380-1Series ISSN 0171-1873 Series E-ISSN 2197-4179
issn_series 0171-1873
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Sound Topology, Duality, Coherence and Wave-Mixing影響因子(影響力)




書目名稱Sound Topology, Duality, Coherence and Wave-Mixing影響因子(影響力)學(xué)科排名




書目名稱Sound Topology, Duality, Coherence and Wave-Mixing網(wǎng)絡(luò)公開度




書目名稱Sound Topology, Duality, Coherence and Wave-Mixing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Sound Topology, Duality, Coherence and Wave-Mixing被引頻次




書目名稱Sound Topology, Duality, Coherence and Wave-Mixing被引頻次學(xué)科排名




書目名稱Sound Topology, Duality, Coherence and Wave-Mixing年度引用




書目名稱Sound Topology, Duality, Coherence and Wave-Mixing年度引用學(xué)科排名




書目名稱Sound Topology, Duality, Coherence and Wave-Mixing讀者反饋




書目名稱Sound Topology, Duality, Coherence and Wave-Mixing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:59:28 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:23:45 | 只看該作者
Pierre Deymier,Keith Rungehematiker in ?sterreichischer Mathematik im 20. Jhd.Mit HintDieses Buch bietet ein Panorama der Schicksale ?sterreichischer Mathematikerinnen und Mathematiker, deren Leben von der NS-Zeit beeinflusst wurde. Zu Beginn wird in einem überblick das allgemeine geistige und politische Klima und die Entwic
地板
發(fā)表于 2025-3-22 05:56:33 | 只看該作者
reichen der Mathematik.Es wird nahezu kein Wissen vorausgese.Dieses Buch macht in 17 Kapiteln Angebote, sich mit bekannten oder auch weniger bekannten Themen aus der Mathematik zu besch?ftigen. Dies geschieht in anschaulicher Weise; daher enth?lt das Buch eine Fülle von farbigen Abbildungen..Es geht
5#
發(fā)表于 2025-3-22 10:25:01 | 只看該作者
6#
發(fā)表于 2025-3-22 16:02:37 | 只看該作者
0171-1873 ach incorporating insights from nonconventional development .This book offers an essential introduction to the notions of sound wave topology, duality, coherence and wave-mixing, which constitute the emerging new science of sound. It includes general principles and specific examples that illuminate
7#
發(fā)表于 2025-3-22 20:47:08 | 只看該作者
Wave Mixing,science of sound to biological media, and may inspire revolutionary new therapeutic technologies that accelerate bone fracture or soft tissue lesion repair processes, or treatment of neurological disorders.
8#
發(fā)表于 2025-3-22 21:22:02 | 只看該作者
Introduction to Spring Systems, of wave phenomena, particularly the phase, in a clear exposition, we will rely on a number of simple models. We first define phase and group velocities using the one-dimensional monatomic harmonic crystal. Then, we advance to the diatomic one-dimension harmonic crystal and the one-dimensional harmo
9#
發(fā)表于 2025-3-23 03:29:10 | 只看該作者
Phase and Topology,or the development of the more complex concepts to be presented in subsequent chapters. In particular, we illustrate the concept of geometric phase in the case of two prototypical elastic systems, namely the one-dimensional harmonic oscillator and a one-dimensional binary superlattice. We demonstrat
10#
發(fā)表于 2025-3-23 06:46:39 | 只看該作者
Topology and Duality of Sound and Elastic Waves,ng to non-conventional topology. In the previous chapter, we considered the consequences of breaking inversion symmetry in discrete superlattices. Here, we present examples of phononic structures that break four types of symmetry, namely time-reversal symmetry, parity symmetry, chiral symmetry and p
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 17:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
治多县| 裕民县| 三门县| 上思县| 波密县| 准格尔旗| 桐乡市| 朝阳市| 萝北县| 临漳县| 崇信县| 民丰县| 扶沟县| 宁波市| 游戏| 武城县| 怀宁县| 墨玉县| 沁水县| 梁河县| 曲阜市| 黄骅市| 五莲县| 衡南县| 博野县| 西平县| 广饶县| 普定县| 抚顺县| 内黄县| 香格里拉县| 金塔县| 宜兰县| 公主岭市| 平凉市| 比如县| 万盛区| 巩留县| 朝阳市| 顺平县| 噶尔县|