找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Solitons and Chaos; Ioannis Antoniou,Franklin J. Lambert Conference proceedings 1991 Springer-Verlag Berlin Heidelberg 1991 Chaos.Integrab

[復(fù)制鏈接]
樓主: 空格
31#
發(fā)表于 2025-3-26 22:59:40 | 只看該作者
0939-7426 pers cover a wide range of topics butshare common mathematical notions and investigationtechniques. An introductory note on eight conceptsofintegrability has been added as a guide for the uninitiatedreader.Both specialists and graduate students will findthis update on the state ofthe art useful.Key
32#
發(fā)表于 2025-3-27 03:27:03 | 只看該作者
What is the Role of Dynamical Chaos in Irreversible Processes? initial conditions is no longer observed. This irreversibility results into dramatic effects on the large scale properties of matter like diffusion, viscosity, heat or electrical conductivities: the phenomenological equations describing these transport properties like the diffusion equation,.are not time-reversal symmetric.
33#
發(fā)表于 2025-3-27 05:47:34 | 只看該作者
Conference proceedings 1991aos vs. integrability; solitons: theory andapplications; dissipative systems; Hamiltonian systems; mapsandcascades; direct vs. inverse methods; higher dimensions;Lie groups,Painleve analysis, numerical algorithms;pertubation methods.
34#
發(fā)表于 2025-3-27 12:08:15 | 只看該作者
35#
發(fā)表于 2025-3-27 13:59:35 | 只看該作者
36#
發(fā)表于 2025-3-27 20:25:12 | 只看該作者
Soliton Dynamics and Chaos Transition in a Microstructured Lattice Modelesented by means of a method of reduction leading to an equation of motion for the soliton mass center. The problem of the soliton dynamics under the influence of discreteness effects and a time-dependent applied field allows us to show a transition to chaos of the soliton motion.
37#
發(fā)表于 2025-3-28 01:38:03 | 只看該作者
A Propositional Lattice for the Logic of Temporal Predictionsnction. Two respective operator formalisms refer to the Liouville operator . and to an information (or entropy) operator .. Both are incommensurable in the sense of a non-vanishing commutator given by . (Sec.2).
38#
發(fā)表于 2025-3-28 02:48:31 | 只看該作者
39#
發(fā)表于 2025-3-28 09:45:57 | 只看該作者
Research Reports in Physicshttp://image.papertrans.cn/s/image/871682.jpg
40#
發(fā)表于 2025-3-28 11:23:08 | 只看該作者
https://doi.org/10.1007/978-3-642-84570-3Chaos; Integrable Systeme; Integrable Systems; Nichtlineare Dynamik; Nonlinear Dynamics; Solitonen; Solito
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 04:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安阳县| 彰化市| 增城市| 扬中市| 清新县| 九江市| 宁都县| 卢湾区| 海原县| 临邑县| 陆良县| 营山县| 罗山县| 潞西市| 平顺县| 奎屯市| 会同县| 永清县| 汨罗市| 胶南市| 洛浦县| 开鲁县| 德州市| 绥江县| 嘉义县| 玛曲县| 大同县| 平顶山市| 容城县| 东乡县| 团风县| 公安县| 开化县| 汝州市| 台前县| 宜春市| 闻喜县| 梅河口市| 阜南县| 临邑县| 乌拉特中旗|