找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Sobolev Spaces; with Applications to Vladimir Maz‘ya Book 2011Latest edition Springer-Verlag Berlin Heidelberg 2011 46E35, 42B37, 26D10.Sob

[復(fù)制鏈接]
樓主: HIV763
21#
發(fā)表于 2025-3-25 04:48:04 | 只看該作者
Approximation in Weighted Sobolev Spaces,the .. seminorm. Now let .??. be an open set and let . be a nontrivial positive Radon measure on .. We will study the space ., defined as the completion of . with respect to the norm . The closure of . in . is denoted .. Note that if .<. then by Sobolev’s inequality the elements in . can be identifi
22#
發(fā)表于 2025-3-25 09:16:05 | 只看該作者
,Spectrum of the Schr?dinger Operator and?the?Dirichlet Laplacian,v’s criterion (16.6.2) involves the so-called negligible sets ., that is, sets of sufficiently small harmonic capacity..In Sects.?18.2–18.3 we show that the constant .. given by (16.6.4) can be replaced by an arbitrary constant ., 0<.<1. We even establish a stronger result allowing negligibility con
23#
發(fā)表于 2025-3-25 12:01:05 | 只看該作者
24#
發(fā)表于 2025-3-25 16:33:10 | 只看該作者
,Conductor and Capacitary Inequalities with?Applications to Sobolev-Type Embeddings,ompact support in .. By . we mean the set {.∈.:|.(.)|>.}, where .>0. We shall use the equivalence relation .~. to denote that the ratio ./. admits upper and lower bounds by positive constants depending only on ., ., ., and ..
25#
發(fā)表于 2025-3-25 20:32:38 | 只看該作者
26#
發(fā)表于 2025-3-26 01:32:09 | 只看該作者
27#
發(fā)表于 2025-3-26 06:27:37 | 只看該作者
28#
發(fā)表于 2025-3-26 12:19:43 | 只看該作者
29#
發(fā)表于 2025-3-26 15:51:32 | 只看該作者
,Spectrum of the Schr?dinger Operator and?the?Dirichlet Laplacian,ay happen that it is satisfied but the spectrum is not discrete (Sect.?18.4). However, we show that in the sufficient condition we can admit arbitrary functions . with values in (0,1), defined for .>0 in a neighborhood of .=0 and satisfying
30#
發(fā)表于 2025-3-26 20:45:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 15:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永胜县| 偃师市| 镇原县| 伊春市| 咸阳市| 台安县| 呼和浩特市| 杭锦旗| 仙居县| 集安市| 桃园市| 张掖市| 泸水县| 张家界市| 子洲县| 绵竹市| 毕节市| 关岭| 资源县| 西乌珠穆沁旗| 睢宁县| 宾阳县| 普宁市| 宁波市| 申扎县| 舒兰市| 兴宁市| 恭城| 宁乡县| 金坛市| 盘山县| 静宁县| 蛟河市| 武义县| 永修县| 南丰县| 江口县| 阳春市| 扬中市| 萝北县| 饶阳县|