找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Smoothing Methods in Statistics; Jeffrey S. Simonoff Book 1996 Springer-Verlag New York, Inc. 1996 Estimator.Excel.Likelihood.Projection P

[復(fù)制鏈接]
查看: 49139|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:16:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Smoothing Methods in Statistics
編輯Jeffrey S. Simonoff
視頻videohttp://file.papertrans.cn/870/869160/869160.mp4
叢書名稱Springer Series in Statistics
圖書封面Titlebook: Smoothing Methods in Statistics;  Jeffrey S. Simonoff Book 1996 Springer-Verlag New York, Inc. 1996 Estimator.Excel.Likelihood.Projection P
描述The existence of high speed, inexpensive computing has made it easy to look at data in ways that were once impossible. Where once a data analyst was forced to make restrictive assumptions before beginning, the power of the computer now allows great freedom in deciding where an analysis should go. One area that has benefited greatly from this new freedom is that of non parametric density, distribution, and regression function estimation, or what are generally called smoothing methods. Most people are familiar with some smoothing methods (such as the histogram) but are unlikely to know about more recent developments that could be useful to them. If a group of experts on statistical smoothing methods are put in a room, two things are likely to happen. First, they will agree that data analysts seriously underappreciate smoothing methods. Smoothing meth- ods use computing power to give analysts the ability to highlight unusual structure very effectively, by taking advantage of people‘s abilities to draw conclusions from well-designed graphics. Data analysts should take advan- tage of this, they will argue.
出版日期Book 1996
關(guān)鍵詞Estimator; Excel; Likelihood; Projection Pursuit; best fit; correlation; statistical software
版次1
doihttps://doi.org/10.1007/978-1-4612-4026-6
isbn_softcover978-1-4612-8472-7
isbn_ebook978-1-4612-4026-6Series ISSN 0172-7397 Series E-ISSN 2197-568X
issn_series 0172-7397
copyrightSpringer-Verlag New York, Inc. 1996
The information of publication is updating

書目名稱Smoothing Methods in Statistics影響因子(影響力)




書目名稱Smoothing Methods in Statistics影響因子(影響力)學(xué)科排名




書目名稱Smoothing Methods in Statistics網(wǎng)絡(luò)公開度




書目名稱Smoothing Methods in Statistics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Smoothing Methods in Statistics被引頻次




書目名稱Smoothing Methods in Statistics被引頻次學(xué)科排名




書目名稱Smoothing Methods in Statistics年度引用




書目名稱Smoothing Methods in Statistics年度引用學(xué)科排名




書目名稱Smoothing Methods in Statistics讀者反饋




書目名稱Smoothing Methods in Statistics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:59:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:52:40 | 只看該作者
Jeffrey S. Simonoffce data. However, these approaches currently have no guarantees for reconstruction quality and the reliability of such algorithms is only poorly understood. Adversarial attacks offer a valuable tool to understand possible failure modes and worst case performance of DL-based reconstruction algorithms
地板
發(fā)表于 2025-3-22 06:05:12 | 只看該作者
Jeffrey S. Simonoffstness compared to conventional methods. Studies have explored MBIR combined with supervised and unsupervised denoising techniques for image reconstruction in magnetic resonance imaging (MRI) and positron emission tomography (PET). Unsupervised methods like the deep image prior (DIP) have shown prom
5#
發(fā)表于 2025-3-22 12:18:14 | 只看該作者
Jeffrey S. Simonoffce data. However, these approaches currently have no guarantees for reconstruction quality and the reliability of such algorithms is only poorly understood. Adversarial attacks offer a valuable tool to understand possible failure modes and worst case performance of DL-based reconstruction algorithms
6#
發(fā)表于 2025-3-22 15:19:36 | 只看該作者
Jeffrey S. Simonoffoss functions that place equal emphasis on reconstruction errors across the field-of-view. This homogeneous weighting of loss contributions might be undesirable in cases where the diagnostic focus is on tissues in a specific subregion of the image. In this paper, we propose a framework for segmentat
7#
發(fā)表于 2025-3-22 17:43:03 | 只看該作者
8#
發(fā)表于 2025-3-22 21:31:00 | 只看該作者
Jeffrey S. Simonoff frequency offset measurements. The generation of QSM requires solving a challenging ill-posed field-to-source inversion problem. Inaccurate field-to-source inversion often causes large susceptibility estimation errors that appear as streaking artifacts in the QSM, especially in massive hemorrhagic
9#
發(fā)表于 2025-3-23 05:00:34 | 只看該作者
10#
發(fā)表于 2025-3-23 08:57:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 03:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清河县| 忻城县| 哈尔滨市| 友谊县| 钟祥市| 东莞市| 新蔡县| 铁岭市| 新龙县| 秀山| 怀安县| 电白县| 桂平市| 凤阳县| 车险| 监利县| 宁蒗| 聊城市| 沁源县| 济源市| 延长县| 平和县| 子长县| 丽水市| 北海市| 社会| 利辛县| 泸西县| 潜江市| 呈贡县| 赤城县| 乌兰察布市| 上林县| 丹巴县| 巫溪县| 延安市| 庄浪县| 东城区| 阳原县| 谢通门县| 海阳市|