找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Smart Sensing and Context; 5th European Confere Paul Lukowicz,Kai Kunze,Gerd Kortuem Conference proceedings 2010 Springer Berlin Heidelberg

[復(fù)制鏈接]
查看: 13078|回復(fù): 53
樓主
發(fā)表于 2025-3-21 18:12:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Smart Sensing and Context
副標(biāo)題5th European Confere
編輯Paul Lukowicz,Kai Kunze,Gerd Kortuem
視頻videohttp://file.papertrans.cn/869/868952/868952.mp4
概述Unique visibility.State-of-the-art survey.Fast-track conference proceedings
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Smart Sensing and Context; 5th European Confere Paul Lukowicz,Kai Kunze,Gerd Kortuem Conference proceedings 2010 Springer Berlin Heidelberg
出版日期Conference proceedings 2010
關(guān)鍵詞activity recognition; ambient sensors; cloud computing; context management; environment; indoor navigatio
版次1
doihttps://doi.org/10.1007/978-3-642-16982-3
isbn_softcover978-3-642-16981-6
isbn_ebook978-3-642-16982-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Berlin Heidelberg 2010
The information of publication is updating

書(shū)目名稱Smart Sensing and Context影響因子(影響力)




書(shū)目名稱Smart Sensing and Context影響因子(影響力)學(xué)科排名




書(shū)目名稱Smart Sensing and Context網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Smart Sensing and Context網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Smart Sensing and Context被引頻次




書(shū)目名稱Smart Sensing and Context被引頻次學(xué)科排名




書(shū)目名稱Smart Sensing and Context年度引用




書(shū)目名稱Smart Sensing and Context年度引用學(xué)科排名




書(shū)目名稱Smart Sensing and Context讀者反饋




書(shū)目名稱Smart Sensing and Context讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:29:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:28:13 | 只看該作者
Activity Recognition Using Biomechanical Model Based Pose Estimationlassifier. The presented activity recognition techniques are used for recognizing 9 everyday and fitness activities, and thus can be applied for e.g., fitness applications or ‘in vivo’ monitoring of patients.
地板
發(fā)表于 2025-3-22 07:33:29 | 只看該作者
A Formal Model of Reliable Sensor Perceptionpart of the framework then allows for an evaluation of a probabilistic variant of the sensor regarding its safety and precision. We in particular treat the analysis of sensor fusion based on evidence theory.
5#
發(fā)表于 2025-3-22 12:35:45 | 只看該作者
FireGuide: A Context-Aware Fire Response Guide for the Building Occupants guide or museum guide, we ask ourselves: “can we build a context-aware fire guide to assist on-site fire victims to escape from a fire?” In reality, many people lose their lives in fire disasters due to bad judgment. Poor decisions are likely made in urgent situations. Timely and appropriate guidan
6#
發(fā)表于 2025-3-22 15:49:15 | 只看該作者
How to Log Sleeping Trends? A Case Study on the Long-Term Capturing of User Dataoyment. Taking the logging of sleeping postures as an example, this study examines data from two very different modalities, high-fidelity video footage and logged wrist acceleration, that were chosen for their ease of setting up and deployability for a sustained period. An analysis shows the deploym
7#
發(fā)表于 2025-3-22 18:51:33 | 只看該作者
Utilizing Social Context for Providing Personalized Services to Mobile Usersable such activities - are increasingly used. This paper describes a system that uses information users share on these networks (personal context), to recommend Web feeds of related content to users. The system mines data from popular social networks and combines it with information from third party
8#
發(fā)表于 2025-3-23 00:37:14 | 只看該作者
Activity Recognition Using Biomechanical Model Based Pose Estimationated from shoulder and elbow joint angles and torso orientation, provided by upper-body pose estimation based on a biomechanical body model. The recognition performance of signal-oriented and model-based features is compared within this paper, and the potential of improving recognition accuracy by c
9#
發(fā)表于 2025-3-23 01:40:32 | 只看該作者
10#
發(fā)表于 2025-3-23 09:31:25 | 只看該作者
On the Use of Magnetic Field Disturbances as Features for Activity Recognition with on Body Sensorsy caused by large metallic objects and electrical appliances, both of which are often involved in human activities. We propose to detect them by subtracting angular velocity values computed from the changes in the magnetic field vector from gyroscope signals. We argue that for activities that are as
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 19:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大港区| 五常市| 平远县| 思南县| 镇原县| 聂拉木县| 灌阳县| 新干县| 大名县| 美姑县| 灌云县| 泗洪县| 绥江县| 河间市| 扶绥县| 霍林郭勒市| 南阳市| 北京市| 田东县| 定襄县| 定陶县| 麻江县| 隆尧县| 临邑县| 天水市| 台中市| 金溪县| 昭通市| 芷江| 松原市| 南陵县| 元阳县| 雅江县| 密云县| 弥勒县| 信宜市| 特克斯县| 大宁县| 黔东| 广元市| 额敏县|