找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Smart Meter Data Analytics; Electricity Consumer Yi Wang,Qixin Chen,Chongqing Kang Book 2020 Science Press and Springer Nature Singapore Pt

[復(fù)制鏈接]
樓主: Magnanimous
31#
發(fā)表于 2025-3-26 21:29:13 | 只看該作者
32#
發(fā)表于 2025-3-27 04:18:26 | 只看該作者
33#
發(fā)表于 2025-3-27 06:00:42 | 只看該作者
Electricity Theft Detection,nd more difficult to detect. Thus, a data analytics method for detecting various types of electricity thefts is required. However, the existing methods either require a labeled dataset or additional system information which is difficult to obtain in reality or have poor detection accuracy. In this c
34#
發(fā)表于 2025-3-27 11:52:55 | 只看該作者
35#
發(fā)表于 2025-3-27 15:45:52 | 只看該作者
Partial Usage Pattern Extraction,ommunication and storage of big data from smart meters at a reduced cost which has been discussed in Chap. .. The other one is the effective extraction of useful information from this massive dataset. In this chapter, the K-SVD sparse representation technique, which includes two phases (dictionary l
36#
發(fā)表于 2025-3-27 21:30:17 | 只看該作者
37#
發(fā)表于 2025-3-28 01:45:05 | 只看該作者
Socio-demographic Information Identification, automatically extracts features from massive load profiles. A support vector machine (SVM) then identifies the characteristics of the consumers. Comprehensive comparisons with state-of-the-art and advanced machine learning techniques are conducted. Case studies on an Irish dataset demonstrate the e
38#
發(fā)表于 2025-3-28 02:56:06 | 只看該作者
39#
發(fā)表于 2025-3-28 07:10:42 | 只看該作者
Clustering of Consumption Behavior Dynamics, customers’ electricity consumption behaviors via load profiling. Instead of focusing on the shape of the load curves, this chapter proposes a novel approach for the clustering of electricity consumption behavior dynamics, where “dynamics” refer to transitions and relations between consumption behav
40#
發(fā)表于 2025-3-28 11:18:09 | 只看該作者
Probabilistic Residential Load Forecasting,forecasting possible. Compared to aggregated loads, load forecasting for individual consumers is prone to non-stationary and stochastic features. In this chapter, a probabilistic load forecasting method for individual consumers is proposed to handle the variability and uncertainty of future load pro
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康马县| 阿拉善右旗| 茌平县| 大埔县| 长兴县| 金湖县| 虹口区| 高要市| 毕节市| 巫山县| 望江县| 金溪县| 保德县| 宜川县| 河池市| 名山县| 平邑县| 托克托县| 邢台市| 大足县| 舒兰市| 疏附县| 钦州市| 新干县| 迭部县| 永城市| 昌吉市| 邢台县| 天气| 南召县| 西丰县| 敦煌市| 桐城市| 黄龙县| 托克逊县| 瑞安市| 宁南县| 商都县| 东源县| 虞城县| 高要市|