找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Singularities and Groups in Bifurcation Theory; Volume II Martin Golubitsky,Ian Stewart,David G. Schaeffer Book 1988 Springer-Verlag New Yo

[復制鏈接]
樓主: 喝水
21#
發(fā)表于 2025-3-25 05:54:01 | 只看該作者
22#
發(fā)表于 2025-3-25 08:17:57 | 只看該作者
Introduction,In Volume I we showed how techniques from singularity theory may be applied to bifurcation problems, and how complicated arrangements of bifurcations may be studied by unfolding degenerate singularities. Both steady-state and Hopf bifurcations proved amenable to these methods.
23#
發(fā)表于 2025-3-25 13:29:59 | 只看該作者
24#
發(fā)表于 2025-3-25 18:06:53 | 只看該作者
25#
發(fā)表于 2025-3-25 22:20:24 | 只看該作者
978-1-4612-8929-6Springer-Verlag New York, Inc. 1988
26#
發(fā)表于 2025-3-26 03:15:47 | 只看該作者
27#
發(fā)表于 2025-3-26 05:40:26 | 只看該作者
Symmetry-Breaking in Steady-State Bifurcation,tion of a compact Lie group Γ on . ?.. Steady-state solutions satisfy . 0; that is, . We focus here on the symmetries that a solution . may possess and in particular define some simple “geometric” notions that will prove to be of central importance.
28#
發(fā)表于 2025-3-26 10:34:38 | 只看該作者
Symmetry-Breaking in Hopf Bifurcation,ymmetry in Chapter VIII. There a dynamic phenomenon—the occurrence of periodic trajectories—was . to a problem in singularity theory by applying the Liapunov-Schmidt procedure. In the remainder of this volume we will show that this is a far-reaching idea and that dynamic phenomena in many different contexts can be studied by similar methods.
29#
發(fā)表于 2025-3-26 14:28:43 | 只看該作者
30#
發(fā)表于 2025-3-26 19:44:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 00:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
佛冈县| 汉沽区| 南江县| 龙门县| 合山市| 乐平市| 调兵山市| 梁山县| 北票市| 安顺市| 永安市| 乐都县| 汝南县| 吉隆县| 类乌齐县| 文昌市| 石家庄市| 贵州省| 藁城市| 滨海县| 微山县| 尤溪县| 绥宁县| 邛崃市| 天津市| 海林市| 浮梁县| 南召县| 娄底市| 吴川市| 珠海市| 怀宁县| 德安县| 沁水县| 宣武区| 沙雅县| 新营市| 紫云| 塔城市| 饶阳县| 田林县|