找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Singularities and Groups in Bifurcation Theory; Volume II Martin Golubitsky,Ian Stewart,David G. Schaeffer Book 1988 Springer-Verlag New Yo

[復(fù)制鏈接]
樓主: 喝水
21#
發(fā)表于 2025-3-25 05:54:01 | 只看該作者
22#
發(fā)表于 2025-3-25 08:17:57 | 只看該作者
Introduction,In Volume I we showed how techniques from singularity theory may be applied to bifurcation problems, and how complicated arrangements of bifurcations may be studied by unfolding degenerate singularities. Both steady-state and Hopf bifurcations proved amenable to these methods.
23#
發(fā)表于 2025-3-25 13:29:59 | 只看該作者
24#
發(fā)表于 2025-3-25 18:06:53 | 只看該作者
25#
發(fā)表于 2025-3-25 22:20:24 | 只看該作者
978-1-4612-8929-6Springer-Verlag New York, Inc. 1988
26#
發(fā)表于 2025-3-26 03:15:47 | 只看該作者
27#
發(fā)表于 2025-3-26 05:40:26 | 只看該作者
Symmetry-Breaking in Steady-State Bifurcation,tion of a compact Lie group Γ on . ?.. Steady-state solutions satisfy . 0; that is, . We focus here on the symmetries that a solution . may possess and in particular define some simple “geometric” notions that will prove to be of central importance.
28#
發(fā)表于 2025-3-26 10:34:38 | 只看該作者
Symmetry-Breaking in Hopf Bifurcation,ymmetry in Chapter VIII. There a dynamic phenomenon—the occurrence of periodic trajectories—was . to a problem in singularity theory by applying the Liapunov-Schmidt procedure. In the remainder of this volume we will show that this is a far-reaching idea and that dynamic phenomena in many different contexts can be studied by similar methods.
29#
發(fā)表于 2025-3-26 14:28:43 | 只看該作者
30#
發(fā)表于 2025-3-26 19:44:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 03:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
瑞昌市| 上高县| 正镶白旗| 苗栗市| 望谟县| 长阳| 广元市| 东兴市| 万年县| 莎车县| 南丰县| 福安市| 清镇市| 天津市| 西丰县| 山丹县| 大名县| 巩义市| 玉树县| 江阴市| 永城市| 会泽县| 吐鲁番市| 营口市| 南汇区| 准格尔旗| 荣昌县| 德令哈市| 洛浦县| 富顺县| 壤塘县| 武功县| 新源县| 台南县| 合江县| 揭西县| 上栗县| 新宾| 福州市| 锦屏县| 宁远县|