找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Singularities and Foliations. Geometry, Topology and Applications; BMMS 2/NBMS 3, Salva Raimundo Nonato Araújo dos Santos,Aurélio Menegon

[復(fù)制鏈接]
樓主: Remodeling
11#
發(fā)表于 2025-3-23 10:17:30 | 只看該作者
José Seadeto the ROCO superfamily of proteins, characterized by a Ras-of-complex (Roc) GTPase domain in tandem with a C-terminal-of-Roc (COR) domain. LRRK2 also contains a protein kinase domain adjacent to the Roc-COR tandem domain in addition to multiple repeat domains. Disease-causing familial mutations clu
12#
發(fā)表于 2025-3-23 15:19:52 | 只看該作者
ponses against microorganisms. Dendritic cells (DCs), including epidermal Langerhans cells and dermal DCs, specialize in recognizing and capturing foreign antigens as well as in the activation of naive T cells, and are thus essential for the induction of immune responses. T lymphocytes transduce ant
13#
發(fā)表于 2025-3-23 21:37:23 | 只看該作者
Leonardo M. Camara,Bruno Scárduaion, inflammation, or proliferation (Springer 1994; Butcher and Picker 1996; Mazo and von Andrian 1999). Recruitment of different subsets of leukocytes and circulating malignant cells to these sites is tightly regulated by sequential adhesive interactions between specific protein receptors on their
14#
發(fā)表于 2025-3-23 22:52:05 | 只看該作者
15#
發(fā)表于 2025-3-24 05:27:38 | 只看該作者
https://doi.org/10.1007/978-3-319-73639-6Singularities; Equisingularity; Milnor Fibration; Foliations; Mappings; Conference Proceedings; Research; 5
16#
發(fā)表于 2025-3-24 07:30:39 | 只看該作者
978-3-030-08826-2Springer International Publishing AG, part of Springer Nature 2018
17#
發(fā)表于 2025-3-24 13:19:02 | 只看該作者
Singularities and Foliations. Geometry, Topology and Applications978-3-319-73639-6Series ISSN 2194-1009 Series E-ISSN 2194-1017
18#
發(fā)表于 2025-3-24 16:17:15 | 只看該作者
Topology of Real SingularitiesIn this mini-course, we study the topology of real singularities. After recalling basic notions and classical results of differential topology, we present formulas for topological invariants of semi-analytic or semi-algebraic sets due to several authors.
19#
發(fā)表于 2025-3-24 22:21:50 | 只看該作者
20#
發(fā)表于 2025-3-24 23:42:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 09:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
呼玛县| 民县| 抚松县| 双牌县| 普定县| 旌德县| 江城| 湄潭县| 永济市| 潮州市| 科技| 大新县| 泗洪县| 潮州市| 贡嘎县| 松潘县| 抚宁县| 临城县| 林口县| 吉木萨尔县| 达尔| 吴堡县| 南丹县| 永寿县| 鄱阳县| 双辽市| 勐海县| 永兴县| 金门县| 长丰县| 泰来县| 新密市| 额尔古纳市| 盈江县| 银川市| 阿克| 田阳县| 吕梁市| 辽中县| 新乐市| 秦安县|