找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Singularities and Foliations. Geometry, Topology and Applications; BMMS 2/NBMS 3, Salva Raimundo Nonato Araújo dos Santos,Aurélio Menegon

[復(fù)制鏈接]
樓主: Remodeling
11#
發(fā)表于 2025-3-23 10:17:30 | 只看該作者
José Seadeto the ROCO superfamily of proteins, characterized by a Ras-of-complex (Roc) GTPase domain in tandem with a C-terminal-of-Roc (COR) domain. LRRK2 also contains a protein kinase domain adjacent to the Roc-COR tandem domain in addition to multiple repeat domains. Disease-causing familial mutations clu
12#
發(fā)表于 2025-3-23 15:19:52 | 只看該作者
ponses against microorganisms. Dendritic cells (DCs), including epidermal Langerhans cells and dermal DCs, specialize in recognizing and capturing foreign antigens as well as in the activation of naive T cells, and are thus essential for the induction of immune responses. T lymphocytes transduce ant
13#
發(fā)表于 2025-3-23 21:37:23 | 只看該作者
Leonardo M. Camara,Bruno Scárduaion, inflammation, or proliferation (Springer 1994; Butcher and Picker 1996; Mazo and von Andrian 1999). Recruitment of different subsets of leukocytes and circulating malignant cells to these sites is tightly regulated by sequential adhesive interactions between specific protein receptors on their
14#
發(fā)表于 2025-3-23 22:52:05 | 只看該作者
15#
發(fā)表于 2025-3-24 05:27:38 | 只看該作者
https://doi.org/10.1007/978-3-319-73639-6Singularities; Equisingularity; Milnor Fibration; Foliations; Mappings; Conference Proceedings; Research; 5
16#
發(fā)表于 2025-3-24 07:30:39 | 只看該作者
978-3-030-08826-2Springer International Publishing AG, part of Springer Nature 2018
17#
發(fā)表于 2025-3-24 13:19:02 | 只看該作者
Singularities and Foliations. Geometry, Topology and Applications978-3-319-73639-6Series ISSN 2194-1009 Series E-ISSN 2194-1017
18#
發(fā)表于 2025-3-24 16:17:15 | 只看該作者
Topology of Real SingularitiesIn this mini-course, we study the topology of real singularities. After recalling basic notions and classical results of differential topology, we present formulas for topological invariants of semi-analytic or semi-algebraic sets due to several authors.
19#
發(fā)表于 2025-3-24 22:21:50 | 只看該作者
20#
發(fā)表于 2025-3-24 23:42:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 23:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伽师县| 通道| 富民县| 蒙城县| 沈丘县| 黔江区| 济南市| 铜梁县| 井冈山市| 景东| 峨边| 宜春市| 科技| 嘉定区| 乌什县| 醴陵市| 乌拉特中旗| 桐城市| 巴里| 万山特区| 那坡县| 普陀区| 汉寿县| 福海县| 潜山县| 泗阳县| 嘉义市| 武冈市| 曲靖市| 邢台市| 武宣县| 浦东新区| 内乡县| 潜江市| 普洱| 五寨县| 如东县| 西城区| 永清县| 松江区| 隆尧县|