找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Singularities and Constructive Methods for Their Treatment; Proceedings of the C Pierre Grisvard,Wolfgang L. Wendland,John R. White Confere

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 12:31:48 | 只看該作者
Calculation of potential in a sector,mputing the numerical values of the coefficients. Moreover, by suitably pairing some terms of the series, the resulting series of terms and pairs turns out to be convergent. It is therefore quite suitable for calculating values of the harmonic function near the vertex.
12#
發(fā)表于 2025-3-23 14:43:05 | 只看該作者
Eigenfunction expansions for non self adjoint operators and separation of variables, the usual boundary conditions even in the case of fractures. Other examples are the Stokes equations and the Stokes-Beltrami equation in special geometries. This research has been mainly motivated by various papers of . (especially ref. [7],[8] below). The main results are presented in the short note [5].
13#
發(fā)表于 2025-3-23 20:08:13 | 只看該作者
14#
發(fā)表于 2025-3-24 01:30:13 | 只看該作者
On finite element methods for nonlinear elliptic problems on domains with corners,e eigenvalue α is given by a root of a quadratic polynomial with known coefficients. The theoretical results are used for the investigation of the ordinary Finite Element Method and the Dual Singular Function Method already known from the linear case. Some numerical computations illustrate the theoretical results.
15#
發(fā)表于 2025-3-24 06:24:37 | 只看該作者
Singularities of cracks with generalized finite elements,e surface displacements of notch or crack zones accurately. Most of these aforementioned difficulties can be eliminated by using a modified hybrid stress model in combination with the displacement method. The proposed . will be shown to offer some significant advantages for plane, axi-symmetric and three dimensionel problems of fracture mechanics.
16#
發(fā)表于 2025-3-24 07:44:31 | 只看該作者
17#
發(fā)表于 2025-3-24 11:05:46 | 只看該作者
Singularities and Constructive Methods for Their Treatment978-3-540-39377-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
18#
發(fā)表于 2025-3-24 18:06:45 | 只看該作者
19#
發(fā)表于 2025-3-24 21:00:34 | 只看該作者
20#
發(fā)表于 2025-3-25 00:16:34 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/s/image/867919.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 03:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连云港市| 长寿区| 桓仁| 吉林市| 高淳县| 合水县| 南岸区| 历史| 甘谷县| 正蓝旗| 佳木斯市| 浠水县| 南汇区| 繁峙县| 蓝田县| 和龙市| 大安市| 绥阳县| 东辽县| 石泉县| 仙游县| 温泉县| 始兴县| 承德市| 璧山县| 平山县| 二连浩特市| 临沭县| 开远市| 大石桥市| 兰坪| 同江市| 南川市| 玛多县| 秭归县| 海晏县| 色达县| 澜沧| 德令哈市| 绩溪县| 龙井市|