找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Singularities and Constructive Methods for Their Treatment; Proceedings of the C Pierre Grisvard,Wolfgang L. Wendland,John R. White Confere

[復(fù)制鏈接]
樓主: 請回避
11#
發(fā)表于 2025-3-23 12:31:48 | 只看該作者
Calculation of potential in a sector,mputing the numerical values of the coefficients. Moreover, by suitably pairing some terms of the series, the resulting series of terms and pairs turns out to be convergent. It is therefore quite suitable for calculating values of the harmonic function near the vertex.
12#
發(fā)表于 2025-3-23 14:43:05 | 只看該作者
Eigenfunction expansions for non self adjoint operators and separation of variables, the usual boundary conditions even in the case of fractures. Other examples are the Stokes equations and the Stokes-Beltrami equation in special geometries. This research has been mainly motivated by various papers of . (especially ref. [7],[8] below). The main results are presented in the short note [5].
13#
發(fā)表于 2025-3-23 20:08:13 | 只看該作者
14#
發(fā)表于 2025-3-24 01:30:13 | 只看該作者
On finite element methods for nonlinear elliptic problems on domains with corners,e eigenvalue α is given by a root of a quadratic polynomial with known coefficients. The theoretical results are used for the investigation of the ordinary Finite Element Method and the Dual Singular Function Method already known from the linear case. Some numerical computations illustrate the theoretical results.
15#
發(fā)表于 2025-3-24 06:24:37 | 只看該作者
Singularities of cracks with generalized finite elements,e surface displacements of notch or crack zones accurately. Most of these aforementioned difficulties can be eliminated by using a modified hybrid stress model in combination with the displacement method. The proposed . will be shown to offer some significant advantages for plane, axi-symmetric and three dimensionel problems of fracture mechanics.
16#
發(fā)表于 2025-3-24 07:44:31 | 只看該作者
17#
發(fā)表于 2025-3-24 11:05:46 | 只看該作者
Singularities and Constructive Methods for Their Treatment978-3-540-39377-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
18#
發(fā)表于 2025-3-24 18:06:45 | 只看該作者
19#
發(fā)表于 2025-3-24 21:00:34 | 只看該作者
20#
發(fā)表于 2025-3-25 00:16:34 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/s/image/867919.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 08:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
农安县| 南丰县| 寿阳县| 林周县| 兴山县| 墨竹工卡县| 加查县| 林口县| 区。| 怀仁县| 汾西县| 绵竹市| 保定市| 吉水县| 延川县| 浦城县| 大同县| 长治市| 萍乡市| 衡阳市| 清苑县| 分宜县| 增城市| 祁阳县| 南陵县| 苗栗市| 疏附县| 长宁区| 东兴市| 太原市| 赣榆县| 肇州县| 沙田区| 马尔康县| 阆中市| 松桃| 江阴市| 南岸区| 贵溪市| 旺苍县| 广元市|