找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Singular Spectrum Analysis for Time Series; Nina Golyandina,Anatoly Zhigljavsky Book 2020Latest edition The Author(s), under exclusive lic

[復(fù)制鏈接]
樓主: decoction
11#
發(fā)表于 2025-3-23 09:48:44 | 只看該作者
12#
發(fā)表于 2025-3-23 16:39:33 | 只看該作者
2191-544X essing (2D-SSA).Illustrated with examples and case studiesThis book gives an overview of singular spectrum analysis (SSA). SSA is a technique of time series analysis and forecasting? combining? elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical syst
13#
發(fā)表于 2025-3-23 22:01:12 | 只看該作者
Introduction,ies analysis and signal processing. The R-based package Rssa, a powerful and comprehensive implementation of SSA-related techniques, is introduced. A list of the main symbols and several historical and bibliographical remarks conclude Chap. 1.
14#
發(fā)表于 2025-3-23 22:11:38 | 只看該作者
15#
發(fā)表于 2025-3-24 06:09:46 | 只看該作者
SSA for Forecasting, Interpolation, Filtering and Estimation,ion that the components of the original time series, which are extracted by SSA, satisfy (at least, locally) certain linear recurrence relations. The main emphasis in Chap. 3 is on time series forecasting and different methods of checking stability and adequacy of forecasts. Other related problems s
16#
發(fā)表于 2025-3-24 08:38:38 | 只看該作者
Book 2020Latest editionassical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA is multi-purpose and naturally combines both model-free and parametric techniques, which makes it a very special and attractive methodology for solving a wide range of problems
17#
發(fā)表于 2025-3-24 13:29:26 | 只看該作者
Basic SSA,ifferent matrix norms, as well as the use of prior and posterior information. Chapter 2 concludes with a description of multidimensional and multivariate extensions of SSA, which are applied to collections of time series and digital images respectively.
18#
發(fā)表于 2025-3-24 18:06:10 | 只看該作者
SSA for Forecasting, Interpolation, Filtering and Estimation,uch as imputation of missing values, interpolation and filtering are examined. Chapter 3 also surveys methods of parameter estimation of the models; such methods are very popular in signal processing. Chapter 3 concludes with descriptions of model-based extensions of multivariate and multidimensional SSA.
19#
發(fā)表于 2025-3-24 19:33:59 | 只看該作者
20#
發(fā)表于 2025-3-25 03:05:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 00:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庆元县| 金华市| 高密市| 城固县| 镇赉县| 乌兰察布市| 中西区| 清远市| 娱乐| 太康县| 阿拉善盟| 台中市| 张家界市| 梅州市| 汽车| 邹城市| 鞍山市| 稻城县| 兴和县| 汤原县| 纳雍县| 石景山区| 自贡市| 徐水县| 衡山县| 黄骅市| 渑池县| 潼关县| 英吉沙县| 上犹县| 永川市| 大新县| 诸暨市| 铁岭县| 黎川县| 舞阳县| 六安市| 南康市| 郁南县| 阳朔县| 德兴市|