找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Singular Nonlinear Partial Differential Equations; Raymond Gérard,Hidetoshi Tahara Book 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

[復制鏈接]
樓主: 寓言
11#
發(fā)表于 2025-3-23 13:35:27 | 只看該作者
12#
發(fā)表于 2025-3-23 15:18:35 | 只看該作者
,Maillet’s type theorems for non linear singular partial differential equations without linear part,d explicitly. We showed also in [19] (see also section 6.4 of chapter 6) that for some particular equations the number . (?) is the exact formal Gevrey index of ?. The main assumption in chapter 6 was that the equation (6.3.1) has a linear part.
13#
發(fā)表于 2025-3-23 19:00:08 | 只看該作者
14#
發(fā)表于 2025-3-24 01:09:19 | 只看該作者
Operators with regular singularities: Several variables case, studying formal linear equations and then we are looking at the analytic case. This means that we are giving conditions under which the formal power series solutions that we obtained in part A are convergent.
15#
發(fā)表于 2025-3-24 05:06:40 | 只看該作者
16#
發(fā)表于 2025-3-24 08:17:46 | 只看該作者
Local study of differential equations of the form , = , near , = 0,olomorphic near the origin of ?.. In particular, we are looking for a normal form of (4.0.1). We have a transformation . which is reducing (4.0.1) to a normal form and this transformation is given as a solution of a partial differential equation of the form . where . is holomorphic near the origin o
17#
發(fā)表于 2025-3-24 13:28:28 | 只看該作者
18#
發(fā)表于 2025-3-24 18:16:10 | 只看該作者
19#
發(fā)表于 2025-3-24 22:03:24 | 只看該作者
20#
發(fā)表于 2025-3-24 23:28:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
吴江市| 会泽县| 吉林市| 射洪县| 乌拉特中旗| 微山县| 罗江县| 汕尾市| 庄河市| 桑日县| 黑水县| 汶川县| 中卫市| 额尔古纳市| 礼泉县| 固镇县| 遂平县| 壶关县| 固原市| 宝清县| 湖北省| 横山县| 肇源县| 兴国县| 苍梧县| 贵港市| 新田县| 苗栗市| 威宁| 元氏县| 高安市| 京山县| 康定县| 凤凰县| 揭东县| 正阳县| 黑山县| 子长县| 筠连县| 竹溪县| 武平县|