找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Singular Integral Operators, Factorization and Applications; International Worksh Albrecht B?ttcher,Marinus A. Kaashoek,Frank-Olme S Confer

[復(fù)制鏈接]
樓主: Manipulate
31#
發(fā)表于 2025-3-26 22:49:21 | 只看該作者
On Inversion of Fractional Spherical Potentials by Spherical Hypersingular Operators,A new proof of the inversion formula for spherical Riesz type fractional potentials in the case 0 <.2 is presented and a constructive reduction of the case lRa > 2 to the case 0 < lia < 2 is given.
32#
發(fā)表于 2025-3-27 01:42:21 | 只看該作者
Albrecht B?ttcher,Marinus A. Kaashoek,Frank-Olme S12th IWOTA-Proceedings traditionally published in the OT series.Selected and thoroughly refereed contributions
33#
發(fā)表于 2025-3-27 07:45:29 | 只看該作者
34#
發(fā)表于 2025-3-27 12:24:00 | 只看該作者
35#
發(fā)表于 2025-3-27 16:40:09 | 只看該作者
On the Essential Spectrum of Toeplitz Operators with Semi-Almost Periodic Symbols,esult by Sarason enables us to decide whether the Toeplitz operator.λ) is Fredholm for a given point a in the plane, but the problem of characterizing the set of.λ for which.λ) is not Fredholm is nevertheless intricate. This question is studied in the present paper.
36#
發(fā)表于 2025-3-27 21:05:52 | 只看該作者
Noncanonical Factorizations of Almost Periodic Multivariable Matrix Functions,the associated Toeplitz operators. The last section is devoted to uses of factorization for normalization of bases, an important problem in wavelets and other applications. Conjectures and open problems are stated.
37#
發(fā)表于 2025-3-27 23:45:18 | 只看該作者
38#
發(fā)表于 2025-3-28 03:07:12 | 只看該作者
Invertibility of Functional Operators with Slowly Oscillating Non-Carleman Shifts,only two fixed points 0 and 1. We suppose that log a’ is bounded and continuous on (0, 1) and that a, b, a’ slowly oscillate at 0 and 1. The main difficulty connected with slow oscillation is overcome by using the method of limit operators.
39#
發(fā)表于 2025-3-28 08:11:49 | 只看該作者
40#
發(fā)表于 2025-3-28 12:06:55 | 只看該作者
An Axiomatic Approach to the Limit Operators Method,, we derive necessary and sufficient conditions for these operators to be semi-Fredholm or Fredholm. As another application, we obtain necessary and sufficient conditions for the semi-Fredholmness and Fredholmness of pseudodifferential operators.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳曲县| 博白县| 疏勒县| 台山市| 昭觉县| 双辽市| 昌邑市| 台中县| 洪洞县| 宝应县| 平安县| 商都县| 和政县| 屯门区| 南丰县| 西和县| 盐边县| 金昌市| 静乐县| 黎平县| 靖江市| 潍坊市| 平南县| 荣昌县| 仁布县| 万安县| 霸州市| 舟山市| 治县。| 天全县| 华阴市| 玛多县| 航空| 东丽区| 思茅市| 盐池县| 星座| 望都县| 察雅县| 保康县| 彭泽县|