找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Singular Integral Operators, Factorization and Applications; International Worksh Albrecht B?ttcher,Marinus A. Kaashoek,Frank-Olme S Confer

[復(fù)制鏈接]
樓主: Manipulate
31#
發(fā)表于 2025-3-26 22:49:21 | 只看該作者
On Inversion of Fractional Spherical Potentials by Spherical Hypersingular Operators,A new proof of the inversion formula for spherical Riesz type fractional potentials in the case 0 <.2 is presented and a constructive reduction of the case lRa > 2 to the case 0 < lia < 2 is given.
32#
發(fā)表于 2025-3-27 01:42:21 | 只看該作者
Albrecht B?ttcher,Marinus A. Kaashoek,Frank-Olme S12th IWOTA-Proceedings traditionally published in the OT series.Selected and thoroughly refereed contributions
33#
發(fā)表于 2025-3-27 07:45:29 | 只看該作者
34#
發(fā)表于 2025-3-27 12:24:00 | 只看該作者
35#
發(fā)表于 2025-3-27 16:40:09 | 只看該作者
On the Essential Spectrum of Toeplitz Operators with Semi-Almost Periodic Symbols,esult by Sarason enables us to decide whether the Toeplitz operator.λ) is Fredholm for a given point a in the plane, but the problem of characterizing the set of.λ for which.λ) is not Fredholm is nevertheless intricate. This question is studied in the present paper.
36#
發(fā)表于 2025-3-27 21:05:52 | 只看該作者
Noncanonical Factorizations of Almost Periodic Multivariable Matrix Functions,the associated Toeplitz operators. The last section is devoted to uses of factorization for normalization of bases, an important problem in wavelets and other applications. Conjectures and open problems are stated.
37#
發(fā)表于 2025-3-27 23:45:18 | 只看該作者
38#
發(fā)表于 2025-3-28 03:07:12 | 只看該作者
Invertibility of Functional Operators with Slowly Oscillating Non-Carleman Shifts,only two fixed points 0 and 1. We suppose that log a’ is bounded and continuous on (0, 1) and that a, b, a’ slowly oscillate at 0 and 1. The main difficulty connected with slow oscillation is overcome by using the method of limit operators.
39#
發(fā)表于 2025-3-28 08:11:49 | 只看該作者
40#
發(fā)表于 2025-3-28 12:06:55 | 只看該作者
An Axiomatic Approach to the Limit Operators Method,, we derive necessary and sufficient conditions for these operators to be semi-Fredholm or Fredholm. As another application, we obtain necessary and sufficient conditions for the semi-Fredholmness and Fredholmness of pseudodifferential operators.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太和县| 东明县| 罗江县| 安福县| 正宁县| 高唐县| 江西省| 平南县| 铜川市| 铁岭市| 珲春市| 永修县| 南华县| 武胜县| 云和县| 千阳县| 柳州市| 图们市| 鄂温| 巴青县| 玉田县| 大关县| 绿春县| 海口市| 随州市| 同仁县| 西宁市| 阿合奇县| 屯留县| 石嘴山市| 灵台县| 砀山县| 宜昌市| 安陆市| 全州县| 洱源县| 昌平区| 天全县| 璧山县| 白河县| 金山区|