找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Simultaneous Triangularization; Heydar Radjavi,Peter Rosenthal Book 2000 Springer Science+Business Media New York 2000 algebra.Banach Spac

[復(fù)制鏈接]
樓主: graphic
11#
發(fā)表于 2025-3-23 11:47:22 | 只看該作者
Semigroups of Nonnegative Matrices,ill also be applied to questions of ordinary reducibility. A substantial part of the chapter is devoted to extensions to semigroups of the Perron-Frobenius Theorem on the existence of positive eigenvectors for nonnegative matrices and symmetries of their spectra (Corollary 5.2.13 below).
12#
發(fā)表于 2025-3-23 17:31:45 | 只看該作者
Compact Operators and Invariant Subspaces,proofs). We give the definition of compactness of an operator and prove the Fredholm alternative. Hilden’s simple proof of Lomonosov’s Theorem that compact operators have hyperinvariant subspaces is presented.
13#
發(fā)表于 2025-3-23 19:49:18 | 只看該作者
Semigroups of Compact Operators, we can show that the norm closure of R+S contains a finite-rank operator other than zero. This often allows us to reduce the given question to the case of operators on a finite-dimensional space and then to use the results of the first five chapters. One important case, in which finite-rank operato
14#
發(fā)表于 2025-3-23 23:25:34 | 只看該作者
15#
發(fā)表于 2025-3-24 02:29:05 | 只看該作者
16#
發(fā)表于 2025-3-24 09:16:28 | 只看該作者
Semigroups of Compact Operators,se of operators on a finite-dimensional space and then to use the results of the first five chapters. One important case, in which finite-rank operators are conspicuously absent, is treated in the first section of this chapter, where we establish Turovskii’s Theorem that a semigroup of compact quasinilpotent operators is triangularizable.q
17#
發(fā)表于 2025-3-24 13:16:56 | 只看該作者
18#
發(fā)表于 2025-3-24 18:48:08 | 只看該作者
19#
發(fā)表于 2025-3-24 20:33:24 | 只看該作者
20#
發(fā)表于 2025-3-25 02:00:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 21:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳东县| 和林格尔县| 遂溪县| 庆云县| 海兴县| 永和县| 双牌县| 剑川县| 沙田区| 福贡县| 修水县| 开原市| 华阴市| 灌云县| 托克托县| 本溪| 遂溪县| 加查县| 柳河县| 玉林市| 读书| 襄城县| 怀来县| 华安县| 伽师县| 台中市| 安阳市| 洱源县| 台南市| 鸡泽县| 礼泉县| 手游| 上高县| 托里县| 北宁市| 金乡县| 泽普县| 罗平县| 临漳县| 托克逊县| 东丰县|