找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Simulation and Synthesis in Medical Imaging; 6th International Wo David Svoboda,Ninon Burgos,Can Zhao Conference proceedings 2021 Springer

[復制鏈接]
樓主: 年邁
11#
發(fā)表于 2025-3-23 09:43:38 | 只看該作者
12#
發(fā)表于 2025-3-23 16:54:42 | 只看該作者
The Role of MRI Physics in Brain Segmentation CNNs: Achieving Acquisition Invariance and Instructivend acquisition-parameter dependent biases. It is important therefore to design algorithms that are not only robust to images of differing contrasts, but also be able to generalise well to unseen ones, with a quantifiable measure of uncertainty. In this paper we demonstrate the efficacy of a physics-
13#
發(fā)表于 2025-3-23 18:25:59 | 只看該作者
14#
發(fā)表于 2025-3-24 00:14:38 | 只看該作者
X-ray Synthesis Based on Triangular Mesh Models Using GPU-Accelerated Ray Tracing for Multi-modal Bran important processing step for optimizing registration parameters and deriving images for multi-modal diagnosis. A fast computation time for creating synthetic images is essential to enable a clinically relevant application. In this paper we present a method to create synthetic X-ray attenuation i
15#
發(fā)表于 2025-3-24 02:41:02 | 只看該作者
Frozen-to-Paraffin: Categorization of Histological Frozen Sections by the Aid of Paraffin Sections aistological findings during the intervention to base intra-operative decisions on the outcome of the histology. However, compared to paraffin sections, the quality of frozen sections is typically lower, leading to a higher ratio of miss-classification. In this work, we investigated the effect of the
16#
發(fā)表于 2025-3-24 06:40:37 | 只看該作者
17#
發(fā)表于 2025-3-24 12:51:11 | 只看該作者
18#
發(fā)表于 2025-3-24 18:28:12 | 只看該作者
19#
發(fā)表于 2025-3-24 19:37:06 | 只看該作者
GAN-Based Synthetic FDG PET Images from T1 Brain MRI Can Serve to Improve Performance of Deep Unsuperated datasets for the training of deep models, with promising performance of GAN-based architectures. However, only a few of these studies assessed task-based related performance of these synthetic data. In this work, we design and compare different GAN-based frameworks for generating synthetic bra
20#
發(fā)表于 2025-3-25 01:45:43 | 只看該作者
Transfer Learning in Optical Microscopychniques in modern microscopy. In this paper, we propose a novel method based on DenseNet architecture and we compare it with Pix2Pix model in the task of translation from images imaged using phase-contrast technique to fluorescence images with focus on usability for cell segmentation.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 20:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
大港区| 灌云县| 巫溪县| 灵台县| 犍为县| 舞钢市| 苏尼特右旗| 洱源县| 广宁县| 延庆县| 徐闻县| 静海县| 吉林省| 阳新县| 紫阳县| 昔阳县| 浦县| 门源| 朝阳市| 临武县| 邻水| 五原县| 宜城市| 方山县| 凤阳县| 乐至县| 新津县| 三亚市| 福建省| 即墨市| 民县| 天长市| 台前县| 钦州市| 芜湖市| 邹平县| 文水县| 报价| 大兴区| 易门县| 宁强县|