找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Similarity-Based Clustering; Recent Developments Michael Biehl,Barbara Hammer,Thomas Villmann Book 2009 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
查看: 26138|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:07:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Similarity-Based Clustering
副標(biāo)題Recent Developments
編輯Michael Biehl,Barbara Hammer,Thomas Villmann
視頻videohttp://file.papertrans.cn/868/867412/867412.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Similarity-Based Clustering; Recent Developments  Michael Biehl,Barbara Hammer,Thomas Villmann Book 2009 Springer-Verlag Berlin Heidelberg
描述Similarity-based learning methods have a great potential as an intuitive and ?exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as distance-based classi?cation, prototypes, or Hebbian learning, with a large variety of di?erent, problem-adapted design choices, such as a data-optimum topology, similarity measure, or learning mode. In medicine, biology, and medical bioinformatics, more and more data arise from clinical measurements such as EEG or fMRI studies for monitoring brain activity, mass spectrometry data for the detection of proteins, peptides and composites, or microarray pro?les for the analysis of gene expressions. Typically, data are high-dimensional, noisy, and very hard to inspect using classic (e. g. , symbolic or linear) methods. At the same time, new technologies ranging from the possibility of a very high resolution of spectra to high-throughput screening for microarray data are rapidly developing and carry thepromiseofane?cient,cheap,andautomaticgatheringoftonsofhigh-quality data with large information potential. Thus, there is a need for appropriate - chine learning methods which
出版日期Book 2009
關(guān)鍵詞Extension; algorithms; bioinformatics; biology; classification; feature selection; learning; machine learni
版次1
doihttps://doi.org/10.1007/978-3-642-01805-3
isbn_softcover978-3-642-01804-6
isbn_ebook978-3-642-01805-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書目名稱Similarity-Based Clustering影響因子(影響力)




書目名稱Similarity-Based Clustering影響因子(影響力)學(xué)科排名




書目名稱Similarity-Based Clustering網(wǎng)絡(luò)公開(kāi)度




書目名稱Similarity-Based Clustering網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Similarity-Based Clustering被引頻次




書目名稱Similarity-Based Clustering被引頻次學(xué)科排名




書目名稱Similarity-Based Clustering年度引用




書目名稱Similarity-Based Clustering年度引用學(xué)科排名




書目名稱Similarity-Based Clustering讀者反饋




書目名稱Similarity-Based Clustering讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:15:33 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:50:17 | 只看該作者
978-3-642-01804-6Springer-Verlag Berlin Heidelberg 2009
地板
發(fā)表于 2025-3-22 07:12:42 | 只看該作者
5#
發(fā)表于 2025-3-22 10:49:31 | 只看該作者
6#
發(fā)表于 2025-3-22 13:51:15 | 只看該作者
Visualization of Structured Data via Generative Probabilistic Modelingrnative local noise models implicitly expressing different notions of structured data similarity. Additionally, using information geometry one can calculate magnification factors on the constructed topographic maps. Magnification factors are a useful tool for cluster detection in non-linear topograp
7#
發(fā)表于 2025-3-22 19:38:39 | 只看該作者
Estimation of Boar Sperm Status Using Intracellular Density Distribution in Grey Level Imagesle images. The other uses an iterative procedure to find an optimal decision criterion that equalizes the number of misclassifications of alive and dead cells. It provides an estimation of the fraction of alive cells that is within 8% of its actual value for 95% of the samples.
8#
發(fā)表于 2025-3-23 01:01:37 | 只看該作者
HIV-1 Drug Resistance Prediction and Therapy Optimization: A Case Study for the Application of Classrecords have response information as well as genotypic data. This leads to two specific challenges (a) semi-supervised learning – a setting where many samples are available but only a small proportion of them are labeled and (b) missing data..We review a novel solution for the first setting: a novel
9#
發(fā)表于 2025-3-23 03:13:03 | 只看該作者
10#
發(fā)表于 2025-3-23 07:54:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 19:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青阳县| 登封市| 志丹县| 福州市| 鹿泉市| 新乡县| 公主岭市| 小金县| 肥东县| 曲麻莱县| 利津县| 托里县| 普洱| 武乡县| 墨竹工卡县| 绥化市| 荣成市| 罗定市| 汕尾市| 福贡县| 武鸣县| 东山县| 精河县| 五家渠市| 桐庐县| 阿拉善右旗| 曲松县| 平武县| 林州市| 高平市| 福安市| 宾阳县| 新竹县| 盐山县| 偏关县| 黄大仙区| 永靖县| 阜新| 江永县| 墨竹工卡县| 兴和县|