找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Siegel Modular Forms; A Classical and Repr Ameya Pitale Book 2019 Springer Nature Switzerland AG 2019 Siegel modular forms.Symplectic group

[復(fù)制鏈接]
樓主: FORGE
11#
發(fā)表于 2025-3-23 11:44:29 | 只看該作者
Applications of Properties of ,-Functions,In this chapter, we present two applications of properties of .-functions of Siegel modular forms. The first one is to determine whether a given modular form is a cusp form based on the size of its Fourier coefficients.
12#
發(fā)表于 2025-3-23 14:56:44 | 只看該作者
Local Representation Theory of ,In this chapter, we will discuss the representation theory of .. The genus 2 case provides a very good introduction to the study of local representations of the symplectic groups. The genus 2 case also has the advantage of detailed tables of data compiled by Roberts and Schmidt.
13#
發(fā)表于 2025-3-23 18:59:00 | 只看該作者
Bessel Models and Applications,Holomorphic Siegel modular forms . correspond to cuspidal automorphic representations . of . that are not globally generic, i.e., they do not have a global Whittaker model.
14#
發(fā)表于 2025-3-24 01:49:28 | 只看該作者
Analytic and Arithmetic Properties of , ,-Functions,In this chapter, we will start from the integral representation for . obtained in the previous chapter. We will use this integral representation to obtain analytic and arithmetic properties of the .-functions. We will also present several applications.
15#
發(fā)表于 2025-3-24 03:25:01 | 只看該作者
16#
發(fā)表于 2025-3-24 06:46:18 | 只看該作者
978-3-030-15674-9Springer Nature Switzerland AG 2019
17#
發(fā)表于 2025-3-24 10:45:58 | 只看該作者
18#
發(fā)表于 2025-3-24 16:33:28 | 只看該作者
19#
發(fā)表于 2025-3-24 20:46:10 | 只看該作者
https://doi.org/10.1007/978-3-030-15675-6Siegel modular forms; Symplectic group; Automorphic representations; L-functions; Fourier coefficients; D
20#
發(fā)表于 2025-3-25 00:58:04 | 只看該作者
Examples,ito–Kurokawa lifts. These are concrete examples of cuspidal Siegel modular forms constructed from elliptic cusp forms. Finally, we consider Siegel modular forms with level . in the genus . case, corresponding to the standard congruence subgroups.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵定县| 乌鲁木齐县| 应用必备| 湖南省| 宣城市| 福清市| 金寨县| 宁晋县| 千阳县| 隆德县| 云阳县| 商河县| 关岭| 宜宾市| 涟源市| 从化市| 博乐市| 泗水县| 岳池县| 华阴市| 湖北省| 勐海县| 买车| 漯河市| 蒙自县| 石柱| 乐安县| 沛县| 柳州市| 怀安县| 镇平县| 孝昌县| 绍兴县| 颍上县| 丹江口市| 南平市| 呼图壁县| 平陆县| 牙克石市| 三台县| 衡南县|