找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Shape in Medical Imaging; International Worksh Martin Reuter,Christian Wachinger,Islem Rekik Conference proceedings 2020 Springer Nature Sw

[復(fù)制鏈接]
樓主: Fruition
11#
發(fā)表于 2025-3-23 12:49:55 | 只看該作者
12#
發(fā)表于 2025-3-23 15:55:03 | 只看該作者
Uncertainty Reduction in Contour-Based 3D/2D Registration of Bone Surfacesnty of the reconstructions. While traditional optimisation methods produce a single point-estimate, we frame the problem as Bayesian inference. We apply a Monte Carlo sampling based non-rigid 3. to 2. registration recovering the posterior distribution of plausible reconstructions. This provides insi
13#
發(fā)表于 2025-3-23 18:27:41 | 只看該作者
14#
發(fā)表于 2025-3-24 00:56:18 | 只看該作者
Bi-invariant Two-Sample Tests in Lie Groups for Shape Analysiserived measures is that they are compatible with the group structure even for manifolds that do not admit any bi-invariant metric. This property, e.g. assures analysis that does not depend on the reference shape, thus, preventing bias due to arbitrary choices thereof. Furthermore, the generalization
15#
發(fā)表于 2025-3-24 05:01:46 | 只看該作者
Uncertain-DeepSSM: From Images to?Probabilistic Shape Modelsn workflow of anatomy segmentation, shape registration, and the optimization of population-level shape representations. DeepSSM is an end-to-end deep learning approach that extracts statistical shape representation directly from unsegmented images with little manual overhead. It performs comparably
16#
發(fā)表于 2025-3-24 06:49:50 | 只看該作者
D-net: Siamese Based Network for Arbitrarily Oriented Volume Alignmentthe extraction of cartilage shape from contrast-enhanced Computed Tomography (CT) of tibiae requires accurate alignment of the bone, currently performed manually. Existing deep learning-based methods for alignment require a common template or are limited in rotation range. Therefore, we present a no
17#
發(fā)表于 2025-3-24 12:58:11 | 只看該作者
A Method for Semantic Knee Bone and Cartilage Segmentation with Deep 3D Shape Fitting Using Data frontation of relevant areas. Our solution covers the entire pipeline from 2D-based pre-segmentation, a method for fast deep 3D shape regression and subsequent patch-based 3D semantic segmentation for final segmentation. Since we perform landmark regression using a statistical shape model, our method i
18#
發(fā)表于 2025-3-24 18:34:30 | 只看該作者
19#
發(fā)表于 2025-3-24 21:16:27 | 只看該作者
Combined Estimation of Shape and Pose for Statistical Analysis of Articulating Jointsoms. For joint comparisons and analysis, the relative positions of the bones can confound subsequent analysis. Clinicians design specific image acquisition protocols to neutralize the individual pose variations. However, recent studies have shown that even specific acquisition protocols fail to achi
20#
發(fā)表于 2025-3-25 02:40:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江西省| 仪陇县| 黄浦区| 略阳县| 婺源县| 黔东| 绥化市| 揭东县| 娱乐| 南川市| 郴州市| 谷城县| 万源市| 松潘县| 纳雍县| 安阳县| 宣化县| 博白县| 西盟| 隆化县| 沅陵县| 通道| 磴口县| 长葛市| 富民县| 大化| 深水埗区| 丹江口市| 唐海县| 甘德县| 潜山县| 铁力市| 九寨沟县| 洪湖市| 长乐市| 观塘区| 渝北区| 全州县| 察雅县| 乐业县| 上林县|