找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Seminar on Stochastic Processes, 1984; E. ?inlar,K. L. Chung,R. K. Getoor Book 1986 Birkh?user Boston, Inc. 1986 Markov process.stochastic

[復(fù)制鏈接]
樓主: 代表
11#
發(fā)表于 2025-3-23 11:02:39 | 只看該作者
On the Continuity of the Local Time of Stable Processes,Let X(t) denote a strictly stable process of index α > 1. That is, X(0) = 0, X has stationary independent increments, and
12#
發(fā)表于 2025-3-23 14:55:00 | 只看該作者
Large Deviations in Ergodic Theory,The classical example of a large deviation result is Cramer’s theorem. It tells us, in a contemporary formulation, that if Y., Y.,… is a sequence of independent real valued random variables with identical distribution function F such that. is finite for all finite θ,and if Z. = (Y.) + Y. + … Y./n then. satisfies.and
13#
發(fā)表于 2025-3-23 19:36:52 | 只看該作者
978-1-4684-6747-5Birkh?user Boston, Inc. 1986
14#
發(fā)表于 2025-3-24 01:41:58 | 只看該作者
15#
發(fā)表于 2025-3-24 05:05:09 | 只看該作者
Gauge Theorem for the Neumann Problem,] for bounded q and then in [1] and [4] for q ∈ K. (see below for definition). The gauge function for the Dirichlet problem is defined in [2] as.,where B = {B., t ≥ 0} is the standard Brownian motion on and IR. and τ. is the first exit time of D. One striking property of the gauge function proved in [2] and [4] is the following.
16#
發(fā)表于 2025-3-24 08:56:41 | 只看該作者
17#
發(fā)表于 2025-3-24 14:01:39 | 只看該作者
18#
發(fā)表于 2025-3-24 17:49:31 | 只看該作者
19#
發(fā)表于 2025-3-24 20:59:04 | 只看該作者
https://doi.org/10.1007/978-1-4684-6745-1Markov process; stochastic process; stochastic processes
20#
發(fā)表于 2025-3-25 02:48:40 | 只看該作者
ronomy and instrument design.Tells a previously untold story.This open access book is a biography of Joseph L. Pawsey. It examines not only his life but the birth and growth of the field of radio astronomy and the state of science itself in twentieth century Australia. The book explains how an isola
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 08:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青龙| 长海县| 县级市| 龙南县| 孝昌县| 潮州市| 留坝县| 桂阳县| 黑龙江省| 同江市| 嘉义市| 鱼台县| 阜平县| 腾冲县| 张家口市| 宜丰县| 荥阳市| 唐山市| 都兰县| 定南县| 册亨县| 攀枝花市| 麻阳| 五台县| 宁化县| 桃源县| 万宁市| 江西省| 乐清市| 嘉定区| 鄯善县| 布拖县| 含山县| 无极县| 汶川县| 龙海市| 宝鸡市| 清镇市| 平遥县| 津市市| 遵义市|