找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Seminar on Stochastic Processes, 1984; E. ?inlar,K. L. Chung,R. K. Getoor Book 1986 Birkh?user Boston, Inc. 1986 Markov process.stochastic

[復制鏈接]
樓主: 代表
11#
發(fā)表于 2025-3-23 11:02:39 | 只看該作者
On the Continuity of the Local Time of Stable Processes,Let X(t) denote a strictly stable process of index α > 1. That is, X(0) = 0, X has stationary independent increments, and
12#
發(fā)表于 2025-3-23 14:55:00 | 只看該作者
Large Deviations in Ergodic Theory,The classical example of a large deviation result is Cramer’s theorem. It tells us, in a contemporary formulation, that if Y., Y.,… is a sequence of independent real valued random variables with identical distribution function F such that. is finite for all finite θ,and if Z. = (Y.) + Y. + … Y./n then. satisfies.and
13#
發(fā)表于 2025-3-23 19:36:52 | 只看該作者
978-1-4684-6747-5Birkh?user Boston, Inc. 1986
14#
發(fā)表于 2025-3-24 01:41:58 | 只看該作者
15#
發(fā)表于 2025-3-24 05:05:09 | 只看該作者
Gauge Theorem for the Neumann Problem,] for bounded q and then in [1] and [4] for q ∈ K. (see below for definition). The gauge function for the Dirichlet problem is defined in [2] as.,where B = {B., t ≥ 0} is the standard Brownian motion on and IR. and τ. is the first exit time of D. One striking property of the gauge function proved in [2] and [4] is the following.
16#
發(fā)表于 2025-3-24 08:56:41 | 只看該作者
17#
發(fā)表于 2025-3-24 14:01:39 | 只看該作者
18#
發(fā)表于 2025-3-24 17:49:31 | 只看該作者
19#
發(fā)表于 2025-3-24 20:59:04 | 只看該作者
https://doi.org/10.1007/978-1-4684-6745-1Markov process; stochastic process; stochastic processes
20#
發(fā)表于 2025-3-25 02:48:40 | 只看該作者
ronomy and instrument design.Tells a previously untold story.This open access book is a biography of Joseph L. Pawsey. It examines not only his life but the birth and growth of the field of radio astronomy and the state of science itself in twentieth century Australia. The book explains how an isola
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 08:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
西华县| 柳江县| 凤山市| 河间市| 隆安县| 台前县| 成都市| 界首市| 石狮市| 英超| 新丰县| 社旗县| 化德县| 黑水县| 陆良县| 苏州市| 巴里| 田林县| 福州市| 长丰县| 左贡县| 建平县| 珠海市| 黔西| 上栗县| 慈溪市| 宜宾市| 大城县| 中牟县| 和田市| 原平市| 原阳县| 伽师县| 西和县| 石家庄市| 都安| 卢龙县| 如皋市| 江西省| 西峡县| 扎赉特旗|