找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Seminar on Stochastic Analysis, Random Fields and Applications V; Centro Stefano Frans Robert C. Dalang,Francesco Russo,Marco Dozzi Confere

[復(fù)制鏈接]
樓主: autoantibodies
21#
發(fā)表于 2025-3-25 03:58:26 | 只看該作者
22#
發(fā)表于 2025-3-25 10:44:38 | 只看該作者
A Bakry-Emery Criterion for Self-Interacting DiffusionsWe give a Bakry-Emery type criterion for self-interacting diffusions on a compact manifold.
23#
發(fā)表于 2025-3-25 12:25:02 | 只看該作者
24#
發(fā)表于 2025-3-25 17:32:52 | 只看該作者
Remarks on 3D Stochastic Navier-Stokes EquationsStochastic Navier-Stokes equations could be a suitable model to address questions of statistical fluid mechanics. For stationary measures arising from the Galerkin scheme, energy balance relations are reviewed, a notion of scaling law inspired by Kolmogorov theory is introduced, and a few results and remarks are given in dimensions 2 and 3.
25#
發(fā)表于 2025-3-25 20:53:32 | 只看該作者
26#
發(fā)表于 2025-3-26 03:01:04 | 只看該作者
Long-Time Behaviour for the Brownian Heat Kernel on a Compact Riemannian Manifold and Bismut’s IntegWe give a probabilistic proof of the classical long-time behaviour of the heat kernel on a compact manifold by using Bismut’s integration-by-parts formula.
27#
發(fā)表于 2025-3-26 04:18:16 | 只看該作者
28#
發(fā)表于 2025-3-26 12:23:35 | 只看該作者
Robert C. Dalang,Francesco Russo,Marco DozziWide range of topics in stochastic analysis and financial engineering.Particular emphasis on applications to fluid dynamics, statistical physics, biology, and mathematical finance.Includes supplementa
29#
發(fā)表于 2025-3-26 13:53:44 | 只看該作者
Progress in Probabilityhttp://image.papertrans.cn/s/image/864966.jpg
30#
發(fā)表于 2025-3-26 19:05:00 | 只看該作者
https://doi.org/10.1007/978-3-7643-8458-6Brownian motion; Dirichlet form; Gaussian noise; Ornstein-Uhlenbeck process; Stochastic processes; Time s
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 00:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东台市| 贵南县| 弋阳县| 东城区| 南康市| 开封县| 中江县| 福安市| 阿尔山市| 偏关县| 雷山县| 四会市| 闵行区| 上饶县| 昌江| 萝北县| 鄯善县| 泌阳县| 明水县| 勐海县| 宁海县| 伽师县| 勃利县| 临沭县| 遂宁市| 海淀区| 新巴尔虎右旗| 保山市| 张家川| 新野县| 石家庄市| 宜丰县| 顺昌县| 永泰县| 太康县| 封开县| 东方市| 如东县| 静安区| 郓城县| 和林格尔县|