找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Semi-Infinite Programming and Applications; An International Sym Anthony V. Fiacco,Kenneth O. Kortanek Conference proceedings 1983 Springer

[復制鏈接]
樓主: Coenzyme
31#
發(fā)表于 2025-3-26 21:44:41 | 只看該作者
32#
發(fā)表于 2025-3-27 03:19:42 | 只看該作者
33#
發(fā)表于 2025-3-27 06:33:50 | 只看該作者
34#
發(fā)表于 2025-3-27 10:59:03 | 只看該作者
A Saddle Value Characterization of Fan’s Equilibrium Pointsly, defined over the simplex S which have certain positivity properties. A real number . is termed an . of the system {f,g} if and only if there exists a point z*, termed an ., satisfying g(z*) = λ*f(z*). Fan shows that λ. exists and is positive and that z* is unique such that ...In this paper we co
35#
發(fā)表于 2025-3-27 17:21:21 | 只看該作者
Duality in Semi-Infinite Linear Programminge no duality gap between the program and its formal dual (with attainment of value in the dual), for every linear objective function. Earlier work provided sufficient conditions for no duality gap for all linear objective functions, or a necessary and sufficient condition for no duality gap for a fi
36#
發(fā)表于 2025-3-27 20:15:56 | 只看該作者
37#
發(fā)表于 2025-3-28 01:05:41 | 只看該作者
38#
發(fā)表于 2025-3-28 05:10:19 | 只看該作者
Globalization of Locally Convergent Algorithms for Nonlinear Optimization Problems with Constraints along the homotopy path, only the active constraints are considered. We assume that there exists only a finite number of critical points, i.e. points where the index set of the active constraints changes. Then a theoretic concept of a globally convergent algorithm consists of the following three ph
39#
發(fā)表于 2025-3-28 06:37:46 | 只看該作者
40#
發(fā)表于 2025-3-28 13:58:14 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南京市| 明水县| 娱乐| 紫云| 梁平县| 响水县| 南宁市| 龙州县| 仁怀市| 新沂市| 康定县| 务川| 定陶县| 七台河市| 枣强县| 和田县| 大英县| 长武县| 修文县| 景洪市| 福贡县| 珠海市| 安多县| 马尔康县| 喀喇| 济宁市| 汕头市| 高雄县| 岑溪市| 新密市| 张家港市| 马龙县| 灵寿县| 涿鹿县| 桓台县| 汉川市| 楚雄市| 墨江| 天祝| 江阴市| 黄龙县|