找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Semi-Infinite Programming; Rembert Reemtsen,Jan-J. Rückmann Book 1998 Springer Science+Business Media Dordrecht 1998 Analysis.Optimality C

[復(fù)制鏈接]
樓主: Pessimistic
11#
發(fā)表于 2025-3-23 11:28:33 | 只看該作者
12#
發(fā)表于 2025-3-23 15:55:18 | 只看該作者
The Design of Nonrecursive Digital Filters via Convex Optimizationst of all in the area of constrained linear-phase filter design. Mainly finite linear optimization has been used which requires the discretization w.r.t. the frequency variable and, if necessary, the linearization of important nonlinear filter characteristics. The work here is founded on convex fini
13#
發(fā)表于 2025-3-23 20:47:26 | 只看該作者
Semi-Infinite Programming in Controlfor optimal control problems in engineering and economics. A few of these problems are described and it is shown how they are related and lead to semi-infinite programming problems..Among the vast literature in the area of semi-infinite programming we want to point out two review articles which incl
14#
發(fā)表于 2025-3-24 01:10:16 | 只看該作者
1571-568X in contrast to finite optimization problems, infinitely many inequality constraints. Prob- lems of this type naturally arise in approximation theory, optimal control, and at numerous engineering applications where the model contains at least one inequality constraint for each value of a parameter an
15#
發(fā)表于 2025-3-24 05:59:46 | 只看該作者
16#
發(fā)表于 2025-3-24 07:19:17 | 只看該作者
Book 1998t to finite optimization problems, infinitely many inequality constraints. Prob- lems of this type naturally arise in approximation theory, optimal control, and at numerous engineering applications where the model contains at least one inequality constraint for each value of a parameter and the para
17#
發(fā)表于 2025-3-24 11:24:38 | 只看該作者
18#
發(fā)表于 2025-3-24 18:10:53 | 只看該作者
19#
發(fā)表于 2025-3-24 21:54:48 | 只看該作者
20#
發(fā)表于 2025-3-25 00:57:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
全椒县| 横峰县| 白山市| 沧州市| 句容市| 建宁县| 兴山县| 双流县| 周宁县| 台中市| 宕昌县| 唐河县| 吉木萨尔县| 曲沃县| 盐边县| 沾益县| 郴州市| 栾城县| 乐平市| 台湾省| 长春市| 旺苍县| 嘉义市| 革吉县| 睢宁县| 凤冈县| 昌吉市| 北川| 侯马市| 鄱阳县| 阳信县| 汉源县| 姜堰市| 阿拉善左旗| 霍山县| 建湖县| 溧阳市| 怀安县| 平泉县| 尖扎县| 涪陵区|