找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Semi-Infinite Programming; Recent Advances Miguel á. Goberna,Marco A. López Book 2001 Springer Science+Business Media Dordrecht 2001 algori

[復(fù)制鏈接]
樓主: Callow
41#
發(fā)表于 2025-3-28 15:11:29 | 只看該作者
42#
發(fā)表于 2025-3-28 19:35:07 | 只看該作者
Optimization under Uncertainty and Linear Semi-Infinite Programming: A Surveylly, we have reviewed several set-inclusive constrained models and some fuzzy programming problems in order to see if they can be solved by means of a linear semi-infinite program. Finally, we present some numerical examples obtained by using a primal semi-infinite programming method.
43#
發(fā)表于 2025-3-28 23:21:11 | 只看該作者
44#
發(fā)表于 2025-3-29 06:59:59 | 只看該作者
45#
發(fā)表于 2025-3-29 10:54:48 | 只看該作者
46#
發(fā)表于 2025-3-29 12:20:14 | 只看該作者
47#
發(fā)表于 2025-3-29 16:31:20 | 只看該作者
Book 2001. This book presents the state of theart in SIP in a suggestive way, bringing the powerful SIP tools closeto the potential users in different scientific and technologicalfields. . The volume is divided into four parts. Part I reviews thefirst decade of SIP (1962-1972). Part II analyses convex andgen
48#
發(fā)表于 2025-3-29 21:54:50 | 只看該作者
A Semi-Infinte Optimization Approach to Optimal Spline Trajectory Planning of Mechanical Manipulatormizer whose feasibility is guaranteed by the use of a deterministic interval procedure; i.e., a routine based on concepts of interval analysis. The proposed approach is tested by planning a 10 via points movement for a two link manipulator.
49#
發(fā)表于 2025-3-30 01:33:54 | 只看該作者
50#
發(fā)表于 2025-3-30 07:33:21 | 只看該作者
On Convex Lower Level Problems in Generalized Semi-Infinite OptimizationRückmann and Stein ([23]) for the case of linear lower level problems also hold in the jointly convex case. Moreover we prove that the set of lower level Kuhn-Tucker multipliers corresponding to a local minimizer has to be a singleton when the defining functions are in general position.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 12:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朝阳县| 德兴市| 西乌| 桓仁| 玉环县| 四会市| 堆龙德庆县| 襄汾县| 永丰县| 启东市| 怀柔区| 永年县| 徐水县| 南昌市| 安图县| 库尔勒市| 台北市| 冀州市| 霍林郭勒市| 高密市| 河池市| 南乐县| 叶城县| 惠东县| 东辽县| 乃东县| 建湖县| 伊吾县| 霍邱县| 灌阳县| 扶风县| 杭锦后旗| 马鞍山市| 乐东| 和林格尔县| 麻栗坡县| 颍上县| 和田县| 镇雄县| 麻栗坡县| 新巴尔虎左旗|