找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes; Quasi-Coherent Torsi Leonid Positselski Book 2023 The Editor(s)

[復(fù)制鏈接]
樓主: Dopamine
11#
發(fā)表于 2025-3-23 11:33:52 | 只看該作者
12#
發(fā)表于 2025-3-23 16:11:25 | 只看該作者
13#
發(fā)表于 2025-3-23 21:28:43 | 只看該作者
Quasi-Coherent Torsion Sheaves,quasi-coherent torsion sheaves on an ind-scheme is a central object of study in this book. The main result of this chapter is that, on a reasonable strict ind-concentrated ind-scheme, the category of quasi-coherent torsion sheaves is a Grothendieck abelian category.
14#
發(fā)表于 2025-3-24 02:07:24 | 只看該作者
Flat Affine Ind-Schemes over Ind-Schemes of Ind-Finite Type,fine morphism of schemes. The aim of this chapter is to describe the semitensor product functor as the composition of the left derived *-restriction and the right derived !-restriction of the external tensor product.
15#
發(fā)表于 2025-3-24 02:21:20 | 只看該作者
16#
發(fā)表于 2025-3-24 09:34:26 | 只看該作者
17#
發(fā)表于 2025-3-24 11:55:34 | 只看該作者
Ind-Schemes of Ind-Finite Type and the ,-Tensor Product,e of ind-finite type over the field .. The aim of this chapter is to describe the cotensor product functor, for a suitable choice of the dualizing complex on ., as the derived !-restriction to the diagonal of the external tensor product on . of two given complexes of quasi-coherent sheaves on ..
18#
發(fā)表于 2025-3-24 18:44:40 | 只看該作者
Invariance Under Postcomposition with a Smooth Morphism,tructions of Chaps. 7–8, including the semiderived category of quasi-coherent torsion sheaves on . and the semitensor product operation on it, are preserved by the passage from the flat affine moprhism . to the flat affine morphism ..
19#
發(fā)表于 2025-3-24 20:08:49 | 只看該作者
20#
發(fā)表于 2025-3-24 23:10:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐至县| 阿合奇县| 灵丘县| 三河市| 芦溪县| 江川县| 和田市| 维西| 双江| 平武县| 昌邑市| 嵊州市| 富宁县| 社旗县| 茂名市| 连州市| 锡林郭勒盟| 谷城县| 交城县| 东源县| 绥化市| 江油市| 石泉县| 金华市| 安仁县| 积石山| 获嘉县| 屏边| 宁德市| 盐源县| 晋城| 阿拉善右旗| 运城市| 乐安县| 扶绥县| 阳城县| 怀来县| 新泰市| 南投县| 勐海县| 阿图什市|